POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 水题

23 篇文章 1 订阅

狄利克雷定理:对于任意互质的正整数a,d,有无限多个质数的形式如a+nd,其中n为正整数,即在等差数列a+d,a+2d,a+3d,…中有无限多个质数。
现在给出a、d和n,求其对应的等差数列中的第n个质数,已知其数值不会超过 106 10 6

先筛出素数来,然后对于一个等差数列,就依次判断,直到找到第n个素数即可。

代码如下:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 1000005
int prime[maxn];//prime[0]为素数个数
bool isPrime[maxn];
void getPrime()//线性筛素数
{
    for (int i = 2; i < maxn; i++)
    {
        if (prime[i] == 0)
            prime[++prime[0]] = i;
        for (int j = 1; j <= prime[0] && prime[j] <= maxn / i; j++)
        {
            prime[prime[j] * i] = 1;
            if (i%prime[j] == 0)
                break;
        }
    }
    for (int i = 1; i <= prime[0]; ++i)
        isPrime[prime[i]] = true;
}
int main()
{
    //freopen("input.txt", "r", stdin);
    getPrime();
    int a, d, n;
    while (scanf("%d%d%d", &a, &d, &n) != EOF)
    {
        if (a == 0 && d == 0 && n == 0)
            break;
        int cnt = 0, ans = a;
        if (isPrime[a])
            ++cnt;
        while (cnt != n)
        {
            ans += d;
            if (isPrime[ans])
                ++cnt;
        }
        printf("%d\n", ans);
    }
    //printf("end\n");
    //while (1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值