Python之数据爬取&数据可视化(1),Python事件分发面试

本文介绍了使用Python进行数据爬取,以淘宝月饼销售数据为例,展示了销量前十的产品及全国地区销量分布,并进行了数据清洗、处理和可视化,揭示了非旺季期间的销售特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3

销量前十产品

从单个销量前十的图中可以看到,非旺季时间排名第一的竟是月饼模具。出乎意料,排名第二的是鲜花月饼。

4

全国销量图(非旺季)

因为非旺季,月销量到2.5w的很少。只有上海地区的月销量有3.6w,而包邮省份江浙地区的销量仅有3w和5w,而四川和重庆地区的月销量只有5k和2k。

python代码

数据爬取:

代码块

# -- coding: utf-8 --

from selenium import webdriver

import time

import csv

import re

# 搜索商品,获取商品页码

def search_product(key_word):

# 定位输入框    browser.find_element_by_id(“q”).send_keys(key_word)

# 定义点击按钮,并点击

browser.find_element_by_class_name(‘btn-search’).click()

# 最大化窗口:为了方便我们扫码

browser.maximize_window()

# 等待15秒,给足时间我们扫码

time.sleep(15)

# 定位这个“页码”,获取“共100页这个文本”

page_info = browser.find_element_by_xpath(‘//div[@class=“total”]’).text

# 需要注意的是:findall()返回的是一个列表,虽然此时只有一个元素它也是一个列表。

page = re.findall(“(\d+)”,page_info)[0]

return page

# 获取数据

def get_data():

# 通过页面分析发现:所有的信息都在items节点下

items = browser.find_elements_by_xpath(‘//div[@class=“items”]/div[@class="item J_MouserOnverReq  "]’)

for item in items:

# 参数信息

pro_desc = item.find_element_by_xpath(‘.//div[@class=“row row-2 title”]/a’).text

# 价格

pro_price = item.find_element_by_xpath(‘.//strong’).text

# 付款人数

buy_num = item.find_element_by_xpath(‘.//div[@class=“deal-cnt”]’).text

# 旗舰店

shop = item.find_element_by_xpath(‘.//div[@class=“shop”]/a’).text

# 发货地

address = item.find_element_by_xpath(‘.//div[@cla

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值