字节跳动现场面试简洁优雅的Python教你如何在工作中“偷懒,实战解析

文章介绍了如何使用Python库如pandas和xlsxwriter处理Excel数据,包括读取、合并和创建图表。此外,还提及了如何通过正则表达式提取文档关键信息以及自动化监控运营数据。最后,分享了Python开发的学习资源和面试准备材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import xlsxwriter

#获取excel中所有的sheet表

def getsheet(fh):

return fh.sheets()

#获取sheet表的行数

def getnrows(fh,sheet):

table=fh.sheets()[sheet]

return table.nrows

#读取文件内容并返回行内容

def getFilect(file,shnum):

fh=open_xls(file)

table=fh.sheets()[shnum]

num=table.nrows

for row in range(num):

rdata=table.row_values(row)

datavalue.append(rdata)

return datavalue

或者直接用concat+一个循环来实现:

for i in var_list:

df_0 = data[[‘var_1’,‘var_2’,‘var_3’,‘var_4’,i]][data[i]==‘信息’]

df_0[‘month’] = date_replace(i)

df_0 = df_0[[‘var_1’,‘var_2’,‘var_3’,‘var_4’,‘var_5’]]

li.append(df_0)

writer = pd.ExcelWriter(r’C:\Users\mapping.xlsx’)

df = pd.concat(li)

df.to_excel(writer,‘Sheet1’,index=False,header = None)

Excel中添加数据图表

整理好excel文件后下一步需要做的是处理文件里的数据,根据数据来生成一些自己需要的图表:

import xlsxwriter

#设置一个例子

data = [20, 45, 26, 18, 45]

#创建表格

workbook = xlsxwriter.Workbook(“temp.xlsx”)

worksheet = workbook.add_worksheet(“data”)

#添加数据

worksheet.write_column(‘A1’, data)

#创建图表

chart = workbook.add_chart({‘type’: ‘line’})

#图表添加数据

chart.add_series({

‘values’: ‘=data! A 1 : A1: A1:A6’,

‘name’: ‘图表名称’,

‘marker’: {

‘type’: ‘circle’,

‘size’: 8,

‘border’: {‘color’: ‘black’},

‘fill’: {‘color’: ‘red’}

} ,

‘data_labels’: {‘values’: True},

‘trendline’: {

‘type’: ‘polynomial’,

‘order’: 2,

‘name’: ‘趋势线’,

‘forward’: 0.5,

‘backward’: 0.5,

‘display_equation’:True,

‘line’: {‘color’: ‘red’, ‘width’:1, ‘dash_type’: ‘long_dash’}

}

})

worksheet.insert_chart(‘c1’, chart)

workbook.close()

实现效果:

在这里插入图片描述

这部分图文来自网络,侵删。

word关键信息提取


假设你收到1万份简历,你想先根据学校做一些筛选,这时候利用python将大量的简历进行信息汇总,只提取关键信息用excel查看起来更加方便。

在这里插入图片描述

docx文件自己本身是压缩文件,打开压缩包之后竟然发现里面有个专门存储word里面文本的文件。

那么步骤就变得简单了:

  1. 打开docx的压缩包

  2. 获取word里面的正文信息

  3. 利用正则表达式匹配出我们想要的信息

  4. 将信息存储到txt中(txt可以用excel打开)

  5. 批量调用上述过程,完成一万份简历的提取工作

利用正则匹配获取关键信息:

import re

def get_field_value(text):

value_list = []

m = re.findall(r"姓 名(.*?)性 别", table)

value_list.append(m)

m = re.findall(r"性 别(.*?)学 历", table)

value_list.append(m)

m = re.findall(r"民 族(.*?)健康状况", table)

value_list.append(m)

‘’’

此处省略其他字段匹配

‘’’

return value_list

自动化运营监控


在平时的工作中,一定会有对运营情况的监控,假设你管理一家店铺,那么一些关键指标肯定是你需要每天查看到的,比如店铺访问数,商品浏览数,下单数等等,这个时候不用每天重复地去统计这些数据,这需要写一个自动化程序,每天将数据保存在固定的文件夹下就可以实现报表的实时监控。

在这里插入图片描述

如果你的数据来源是线下文件:

  • 利用python操作线下文件将其载入数据库

  • 通过数据库对数据进行处理

  • 利用python输出结果

from impala.dbapi import connect

from impala.util import as_pandas

import datetime

conn = connect(host=‘host’,port=21050,auth_mechanism=‘PLAIN’,user=‘user’,password=‘password’)

#host:数据库域名

#user:数据库用户名

#password:数据库密码

df_data = pd.read_excel(‘temp.xlsx’)

rows =[]

for index, row in df_data.iterrows():

rows.append(‘(’+‘"’+str(row[‘case_id’]).replace(‘nan’,‘null’)+‘"’+‘,’+‘"’+str(row[‘birth_date’])+‘"’+‘)’+‘,’)

a= ‘’’

INSERT into table

(case_id, birth_date)

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

文末有福利领取哦~

👉一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。img

👉二、Python必备开发工具

img
👉三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
img

👉 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
img

👉五、Python练习题

检查学习结果。
img

👉六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
img

img

👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

分资料,这份完整版的Python全套学习资料已经上传

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值