import xlsxwriter
#获取excel中所有的sheet表
def getsheet(fh):
return fh.sheets()
#获取sheet表的行数
def getnrows(fh,sheet):
table=fh.sheets()[sheet]
return table.nrows
#读取文件内容并返回行内容
def getFilect(file,shnum):
fh=open_xls(file)
table=fh.sheets()[shnum]
num=table.nrows
for row in range(num):
rdata=table.row_values(row)
datavalue.append(rdata)
return datavalue
或者直接用concat+一个循环来实现:
for i in var_list:
df_0 = data[[‘var_1’,‘var_2’,‘var_3’,‘var_4’,i]][data[i]==‘信息’]
df_0[‘month’] = date_replace(i)
df_0 = df_0[[‘var_1’,‘var_2’,‘var_3’,‘var_4’,‘var_5’]]
li.append(df_0)
writer = pd.ExcelWriter(r’C:\Users\mapping.xlsx’)
df = pd.concat(li)
df.to_excel(writer,‘Sheet1’,index=False,header = None)
Excel中添加数据图表
整理好excel文件后下一步需要做的是处理文件里的数据,根据数据来生成一些自己需要的图表:
import xlsxwriter
#设置一个例子
data = [20, 45, 26, 18, 45]
#创建表格
workbook = xlsxwriter.Workbook(“temp.xlsx”)
worksheet = workbook.add_worksheet(“data”)
#添加数据
worksheet.write_column(‘A1’, data)
#创建图表
chart = workbook.add_chart({‘type’: ‘line’})
#图表添加数据
chart.add_series({
‘values’: ‘=data! A 1 : A1: A1:A6’,
‘name’: ‘图表名称’,
‘marker’: {
‘type’: ‘circle’,
‘size’: 8,
‘border’: {‘color’: ‘black’},
‘fill’: {‘color’: ‘red’}
} ,
‘data_labels’: {‘values’: True},
‘trendline’: {
‘type’: ‘polynomial’,
‘order’: 2,
‘name’: ‘趋势线’,
‘forward’: 0.5,
‘backward’: 0.5,
‘display_equation’:True,
‘line’: {‘color’: ‘red’, ‘width’:1, ‘dash_type’: ‘long_dash’}
}
})
worksheet.insert_chart(‘c1’, chart)
workbook.close()
实现效果:
这部分图文来自网络,侵删。
假设你收到1万份简历,你想先根据学校做一些筛选,这时候利用python将大量的简历进行信息汇总,只提取关键信息用excel查看起来更加方便。
docx文件自己本身是压缩文件,打开压缩包之后竟然发现里面有个专门存储word里面文本的文件。
那么步骤就变得简单了:
-
打开docx的压缩包
-
获取word里面的正文信息
-
利用正则表达式匹配出我们想要的信息
-
将信息存储到txt中(txt可以用excel打开)
-
批量调用上述过程,完成一万份简历的提取工作
利用正则匹配获取关键信息:
import re
def get_field_value(text):
value_list = []
m = re.findall(r"姓 名(.*?)性 别", table)
value_list.append(m)
m = re.findall(r"性 别(.*?)学 历", table)
value_list.append(m)
m = re.findall(r"民 族(.*?)健康状况", table)
value_list.append(m)
‘’’
此处省略其他字段匹配
‘’’
return value_list
在平时的工作中,一定会有对运营情况的监控,假设你管理一家店铺,那么一些关键指标肯定是你需要每天查看到的,比如店铺访问数,商品浏览数,下单数等等,这个时候不用每天重复地去统计这些数据,这需要写一个自动化程序,每天将数据保存在固定的文件夹下就可以实现报表的实时监控。
如果你的数据来源是线下文件:
-
利用python操作线下文件将其载入数据库
-
通过数据库对数据进行处理
-
利用python输出结果
from impala.dbapi import connect
from impala.util import as_pandas
import datetime
conn = connect(host=‘host’,port=21050,auth_mechanism=‘PLAIN’,user=‘user’,password=‘password’)
#host:数据库域名
#user:数据库用户名
#password:数据库密码
df_data = pd.read_excel(‘temp.xlsx’)
rows =[]
for index, row in df_data.iterrows():
rows.append(‘(’+‘"’+str(row[‘case_id’]).replace(‘nan’,‘null’)+‘"’+‘,’+‘"’+str(row[‘birth_date’])+‘"’+‘)’+‘,’)
a= ‘’’
INSERT into table
(case_id, birth_date)
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
分资料,这份完整版的Python全套学习资料已经上传
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算