Educational Codeforces Round 167 (Rated for Div. 2) F. Simultaneous Coloring(动态图加点维护强连通分量scc)

题目

思路来源

ak区up主&jiangly代码

题解

能理解大概怎么回事但是不会写代码,抄一下jiangly代码

首先,转成二分图,左侧每行一个点1到点n,右侧每列一个点1到点m,

考虑颜色,B 的话就 u->v,R 的话就 v->u,然后求强连通分量scc,

scc内每个点有两个被指向的方向,

换言之就是无论以什么顺序topo都会成环,所以必须同时选中然后钦定颜色

而钦定大小为k的时候,k=1的时候代价为0,k>1的时候是k^2,

所以,总代价是不为1的scc的大小的平方和

然后询问是两个点没有相同的,所以说明都是加边

然后强行把动态图做成离线的,

独立地看每一条边,需要考虑的是这两条边两端点,是在第几次操作后首次在同一个scc里的

所以分治,对于当前边集,把[l,mid]操作里的边全加上,

加完之后,

如果边两端已经在同一个连通分量里,说明是更早就通了,拿着这些边s1,递归[l,mid],

否则说明加完了也没通,拿着这些边s2在[l,mid]缩点得到的图的基础上,递归[mid+1,r]

递归到最底层的时候把并查集合一合,计算一下大小

代码

#include <bits/stdc++.h>

using i64 = long long;
struct DSU {
    std::vector<int> f, siz;
    
    DSU() {}
    DSU(int n) {
        init(n);
    }
    
    void init(int n) {
        f.resize(n);
        std::iota(f.begin(), f.end(), 0);
        siz.assign(n, 1);
    }
    
    int find(int x) {
        while (x != f[x]) {
            x = f[x] = f[f[x]];
        }
        return x;
    }
    
    bool same(int x, int y) {
        return find(x) == find(y);
    }
    
    bool merge(int x, int y) {
        x = find(x);
        y = find(y);
        if (x == y) {
            return false;
        }
        siz[x] += siz[y];
        f[y] = x;
        return true;
    }
    
    int size(int x) {
        return siz[find(x)];
    }
};
int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int n, m, q;
    std::cin >> n >> m >> q;
    
    const int N = n + m;
    
    std::vector<std::pair<int, int>> e(q);
    for (int i = 0; i < q; i++) {
        int u, v;
        std::cin >> u >> v;
        u--;
        v--;
        v += n;
        e[i] = {u, v};
        char c;
        std::cin >> c;
        
        if (c == 'R') {
            std::swap(e[i].first, e[i].second);
        }
    }
    
    i64 ans = 0;
    DSU dsu(N);
    std::vector<std::vector<int>> adj(N);
    
    std::vector<int> dfn(N), low(N), bel(N), vis(N);
    std::vector<int> stk;
    int cur = 0, cnt = 0;
    auto dfs = [&](auto &&self, int x) -> void {
        dfn[x] = low[x] = cur++;
        stk.push_back(x);
        
        for (auto y : adj[x]) {
            if (dfn[y] == -1) {
                self(self, y);
                low[x] = std::min(low[x], low[y]);
            } else if (bel[y] == -1) {
                low[x] = std::min(low[x], dfn[y]);
            }
        }
        
        if (dfn[x] == low[x]) {
            int y;
            do {
                y = stk.back();
                bel[y] = cnt;
                stk.pop_back();
            } while (y != x);
            cnt++;
        }
    };
    
    auto work = [&](auto &&self, int l, int r, const std::vector<int> pv, const std::vector<int> pe) {
        cur = cnt = 0;
        for (auto x : pv) {
            adj[x].clear();
            dfn[x] = low[x] = bel[x] = -1;
            vis[x] = 0;
        }
        for (auto i : pe) {
            if (i >= r) {
                continue;
            }
            auto [x, y] = e[i];
            x = dsu.find(x);
            y = dsu.find(y);
            if (x == y) {
                continue;
            }
            adj[x].push_back(y);
        }
        for (auto x : pv) {
            if (dfn[x] == -1) {
                dfs(dfs, x);
            }
        }
        std::vector<int> npv, npe;
        npv.reserve(pv.size());
        npe.reserve(pe.size());
        for (auto i : pe) {
            if (i >= r) {
                continue;
            }
            auto [x, y] = e[i];
            x = dsu.find(x);
            y = dsu.find(y);
            if (x == y) {
                continue;
            }
            if (bel[x] == bel[y]) {
                if (!vis[x]) {
                    vis[x] = 1;
                    npv.push_back(x);
                }
                if (!vis[y]) {
                    vis[y] = 1;
                    npv.push_back(y);
                }
                npe.push_back(i);
            }
        }
        if (r - l == 1) {
            for (auto i : npe) {
                auto [x, y] = e[i];
                x = dsu.find(x);
                y = dsu.find(y);
                if (x == y) {
                    continue;
                }
                int sx = dsu.size(x);
                int sy = dsu.size(y);
                if (sx > 1) {
                    ans -= 1LL * sx * sx;
                }
                if (sy > 1) {
                    ans -= 1LL * sy * sy;
                }
                dsu.merge(y, x);
                sx += sy;
                ans += 1LL * sx * sx;
            }
            std::cout << ans << "\n";
            return;
        }
        int m = (l + r) / 2;
        self(self, l, m, npv, npe);
        self(self, m, r, npv, npe);
    };
    std::vector<int> pv(N), pe(q);
    std::iota(pv.begin(), pv.end(), 0);
    std::iota(pe.begin(), pe.end(), 0);
    work(work, 0, q, pv, pe);
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值