思路来源
https://blog.csdn.net/qq_36056315/article/details/79845193(清晰易懂)
https://www.cnblogs.com/reverymoon/p/9525764.html(板子+例题)
知识总结
笛卡尔树是形如上图的一棵树,满足
①堆的性质,如本图,小根堆,两子的值大于等于父亲的值
②二叉搜索树性质,即左子树的点key(默认为下标)比根小,右子树的点key(默认为下标)比根大
显然,按中序遍历这棵树,可得原序列
③询问下标i到下标j之间(i<j)的最小值,只需寻找[i,j]的lca
笛卡尔树的构造
如果有key作第一关键字要求,要求先按照key的增序排列;否则,把key默认认为是下标
用单调栈实时维护当前树中的最右链,
即根,根的右子树,根的右子树的右子树
每次插入一个值v3的时候,在单调栈中,
不断清除大于等于v3的值,从而找到第一个小于v3的值为v1,
由于v1原右子树v2>=v3(不然第一个小于v3的值,就不是v1了),且比v3更早插入,
所以v2应该作新插入的v3的左子树,而把v3为v1的右子树
然后把v3加入栈中,保证最右链的单增性(这里维护的是小根堆)
注意没有v2的情形,即v1是叶子
注意没有v1的情形,即v3是新根
单调栈,每个元素最多进栈一次,出栈一次,O(n)完成构造
笛卡尔树,似乎会在序列单增的时候,被卡成一条链
据说,Treap也是这样的一棵树,但Treap的v是随机出来的,使树更平衡
代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,v[N],fa[N],ls[N],rs[N];
int s[N],top;
void Tree()
{
for(int i = 1; i <= n; i ++)
{
scanf("%d",&v[i]);
while(top && v[s[top]] > v[i])
ls[i] = s[top], top --;
fa[i] = s[top];
fa[ls[i]] = i;
if(fa[i]) rs[fa[i]] = i;
s[++ top] = i;
}
}