Python实现Adaboost算法及完整源码

418 篇文章 ¥99.90 ¥299.90
本文介绍了如何使用Python实现Adaboost算法,包括数据准备、定义基础决策树分类器、构建Adaboost分类器以及模型测试。示例中采用UCI heart disease数据集,并通过sklearn库进行数据处理和模型评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现Adaboost算法及完整源码

Adaboost算法是一种集成学习算法,它将多个弱分类器(分类效果略优于随机猜测)进行组合,构建一个强分类器。本篇文章将介绍如何用Python实现Adaboost算法,并提供完整源代码。

步骤1:准备数据

首先,在做机器学习之前,需要准备好数据集。本次使用的数据集是UCI Machine Learning Repository中的heart disease数据集。代码中我们使用了pandas库对数据进行处理和清洗。同时还使用了sklearn库中的train_test_split方法将数据分为训练集和测试集。

代码如下:

import pandas as pd
from sklearn.model_selection import train_test_split

data=pd.read_csv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_welike

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值