如何使用 Python 进行离群值/异常值检测:箱线图法

418 篇文章 ¥99.90 ¥299.90
本文介绍了如何使用Python进行离群值/异常值检测,重点关注箱线图法。通过引入numpy、pandas和matplotlib库,生成包含异常值的随机数据,然后绘制箱线图并确定关键信息,如Q1、Q3和IQR,最终识别出异常值。示例代码展示了完整的离群值检测过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何使用 Python 进行离群值/异常值检测:箱线图法

在机器学习中,数据预处理是非常重要的一步。其中,离群值/异常值的检测是很重要的一部分,因为这些值会对模型的准确性和健壮性造成不良影响。在本文中,我们将介绍如何使用 Python 中的箱线图法来检测离群值/异常值。

  1. 引入所需库

在开始之前,我们需要引入必要的库:numpy、pandas 和 matplotlib。其中,numpy 和 pandas 是科学计算的基础库,而 matplotlib 则是可视化数据的利器。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
  1. 生成随机数据

我们首先需要生成一些随机数据,并将其中一部分数据设置为离群值/异常值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_welike

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值