题目 1110: 2^k进制数
时间限制: 1Sec 内存限制: 128MB 提交: 1733 解决: 848
题目描述
设r是个2^k 进制数,并满足以下条件:
(1)r至少是个2位的2^k 进制数。
(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。
(3)将r转换为2进制数q后,则q的总位数不超过w。
在这里,正整数k(1≤k≤9)和w(k〈w≤30000)是事先给定的。
问:满足上述条件的不同的r共有多少个?
我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。
例:设k=3,w=7。则r是个八进制数(2^3=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:
2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。
3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。
所以,满足要求的r共有36个。
输入
只有1行,为两个正整数,用一个空格隔开:
k w
输出
1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。
(提示:作为结果的正整数可能很大,但不会超过200位)
样例输入
3 7
样例输出
36
思路
相当于给某些m个空位置,然后一共n个小球,进行组合。一共是Cn m
针对这题
如果说不考虑第一位数,也就是最左侧的数,或者说第一位数为0,此时每个位置都可以取1到2^k-1
此时只需要枚举空位,加起来即可。因为条件是必须至少2位,最大也就w/k位(不算单独多出来不满k个数的呢一位)每一次就是C2^k - 1 i (i从2到w/k)
如果考虑第一位数,则需要考虑第一位数的取值应该是1到2^(w%k)-1,我们可以进行暴力枚举。
假设第一数为val, 则其他位置的取值只能是val + 1 到 2^k - 1,也就一共只有2^k - 1 - val个数,此时无论第一个数取什么值,后面的空位都可以用,因此是C2^k - 1 - val w/k
ps:为什么要考虑把第一位分出来?
因为第一位的取值,不能跟后面一样取到2^k - 1, 不可以直接用组合计算。
#include <bits/stdc++.h>
#define int long long
const int MAXN = 1e7+7;
using namespace std;
int C(int n, int m){
int sum = 1;
int base = 1;
for(int i = n; i >= n - m + 1; i --)
sum *= i;
for(int i = m; i >= 2; i --)
base *= i;
return sum / base;
}
signed main(){
int k, w;
cin >> k >> w;
int ans = 0;
int maxn = pow(2, k) - 1;
int weishu = w / k;
for(int i = 2; i <= weishu; i ++)
ans += C(maxn, i);
if(w % k != 0){
int fmaxn = pow(2, w % k) - 1;
for(int i = 1; i <= fmaxn; i ++){
ans += C(maxn - i, weishu);
}
}
cout << ans << endl;
return 0;
}