小编编程资质一般,刚出道的时候使用的是windows来做程序开发,平时linux命令的知识仅限于在学校里玩ubuntu的时候学到的那丁点。在一次偶然看见项目的主程敲着复杂的shell单行命令来处理日志的时候感到惊讶不已。后来自己自学了一点shell编程,刚看完一本书没过多久就忘记了,因为工作中用到的实在太少,而且命令如此之多,学了一个忘了另一个,始终摸不着门道在哪。
直到某天灵感爆发,发现了一个窍门之后,才牢牢地把握住了shell指令的精髓。
用写SQL查询的思维写shell命令
写SQL小编非常在行,毕业第一年的时候SQL就写的行云流水。经常别人写了一个存储过程来干某件事的时候,哥用一条语句搞定。自然这样的语句也是被不少人吐槽的,难以看懂。
偶然一天我将一个数据表导入成一个CSV文件的时候发现了这个窍门。如果把这个CSV文件看成一个数据表,把各种shell指令看成SQL的查询条件,这两种数据处理方式在思维模式上就没有什么区别了。
然后就开始仔细研究了一番,又有了好多惊人的发现。原来shell指令除了查询之外还可以做修改,相当于SQL的DML操作。shell指令除了能做单表数据处理之外还可以实现类似于SQL多表的JOIN操作。连排序和聚合功能也能轻松搞定。
首先下载本章用到的数据,该数据有20多M,建议耐心等待。
git clone https://github.com/pyloque/shellquery_ppt.git
第一个文件groups.txt表示小组,有三个字段,分别是小组ID、小组名称和小组创建时间
第二个文件rank_items.txt代表行为积分。字段分别是行为唯一ID、行为类型、行为关联资源ID、行为时间和行为积分。行为类型包含group单词的是和小组相关的积分行为。其它行为还有与帖子、用户、问题、文章相关的。
文本文件等价于数据表table
数据表是有模式的数据,每个列都有特定的含义。表的模式信息可以在数据库的元表里找到。
CSV文本文件也是有模式的数据,只不过它的列信息只存在于用户的大脑里。文件里只有纯粹的数据和数据分隔符。CSV文本文件的记录之间使用换行符分割,列之间使用制表符或者逗号等符号进行分隔。
数据表的行记录等价于CSV文本文件的一行数据。数据表一行的列数据可以使用名称指代,但是CSV行的列数据只能用位置索引,表达能力上相比要差一截。
在测试阶段,我们使用少量行的数据进行测试,这个时候可以使用head指令只吐出CSV文本文件的前N行数据,它相当于SQL的limit条件。同样也可以使用tail指令吐出文件的倒数前N行数据。使用cat指令吐出所有。
# 看前5行
bash> head -n 5 groups.txt
205;"真要瘦不瘦不罢休";"2012-11-23 13:42:38+08"
28;"健康朝九晚五";"2010-10-20 16:20:43+08"
280;"核谐家园";"2013-04-17 17:11:49.545351+08"
38;"创意科技";"2010-10-20 16:20:44+08"
39;"死理性派";"2010-10-20 16:20:44+08"
# 看倒数5行
bash> tail -n 5 groups.txt
69;"吃货研究所";"2010-11-10 14:35:34+08"
27;"DIY";"2010-10-20 16:20:43+08"
33;"心事鉴定组";"2010-10-20 16:20:44+08"
275;"盗梦空间";"2013-03-21 23:35:39.249583+08"
197;"万有青年养成计划";"2012-11-14 11:39:50+08"
# 显示所有
bash> cat groups.txt
...
数据过滤等价于查询条件where
数据过滤一般会使用grep或者awk指令。grep用来将整个行作为文本来进行搜索,保留满足指定文本条件的行,或者是保留不满足匹配条件的行。awk可以用来对指定列内容进行文本匹配或者是数字匹配。
# 显示包含‘技术’单词的行
bash> cat groups.txt | grep 技术
73;"美丽也是技术活";"2010-11-10 15:08:59+08"
279;"灰机与航空技术";"2013-04-12 13:30:31.617491+08"
243;"科学技术史";"2013-01-24 12:48:44.06041+08"
# 显示即包含单词‘技术’又包含‘灰机’的行
bash> cat groups.txt | grep 技术 | grep 灰机
279;"灰机与航空技术";"2013-04-12 13:30:31.617491+08"
# 显示小组ID小于30的行 -F限定分隔符 后面是一个awk脚本
# awk一门简单的编程语言,它处理的对象是以行为单位
# $0表示整行内容 $1代表第一列内容
# awk分4段,选择端|起始段|处理段|结束段
# filter BEGIN{} {} END{}
# 选择端起到过滤行的作用,选择成功的行进入处理段
# 起始端在第一个行处理之前进行,结束段在最后一个行处理完成之后进行,只进行依次
# 处理段就是对选择成功的行依次处理,依次处理一行
# 这些段都是可选的
# 参考awk简明教程 https://coolshell.cn/articles/9070.html
bash> cat groups.txt | awk -F';' '$1<30 {print $0}'
28;"健康朝九晚五";"2010-10-20 16:20:43+08"
29;"爱宠";"2010-10-20 16:20:44+08"
27;"DIY";"2010-10-20 16:20:43+08"
限定字段输出
我们经常使用列名称来限定SQL的输出对象。
SQL> select id, user from group
同样对于文本文件,我们可以使用cut指令或者awk来完成。
# 只显示前3行的第一列和第二列,保留分隔符 -d指明分隔符
bash> cat groups.txt | head -n 3 | cut -d';' -f1 -f2
205;"真要瘦不瘦不罢休"
28;"健康朝九晚五"
280;"核谐家园"
# 只显示前3行的第一列和第二列,用空格作为分隔符
bash> cat groups.txt | head -n 3 | awk -F';' '{print $1" "$2}'
205 "真要瘦不瘦不罢休"
28 "健康朝九晚五"
280 "核谐家园"
组合命令的效率
一个复杂的单行命令可以有非常多的单条指令组成,每个指令都会对应着一个进程。进程和进程之间使用管道将输入输出串接起来,形如人体蜈蚣。
第一个进程处理了一行数据后从输出吐了出来,成了第二个进程的输入,在第二个进程对第一行数据进行处理的过程中,第一个进程又可以继续处理后面的行。
如此就形成了一个流水线结构,每个进程都在并行的进行数据处理。整个组合命令的效率将取决于所有命令中最慢的一条。
排序操作又不同于其它操作,它需要等待所有的数据都接受完成才能决定第一个输出。所以排序是一个即占用内存又耗费时间的操作,它会导致后续进程的饥饿感。
聚合
数据聚合也是shell里经常使用到的命令,最常用的可能就是用wl来统计行数,其实也可以使用awk来完成更加复杂的统计功能。
# 总共多少行
bash> cat groups.txt | wc -l
216
# 用awk实现,遇到一行对变量l加1,最后输出l变量的值,也即行数
bash> cat groups.txt | awk '{l+=1} END{print l}'
awk还可以完成类似于group by的功能,这个脚本就要复杂一点
# 因为命令太长,下面用了shell命令续行符"\"
# 统计每行的名称长度[去掉前后两个引号],将相同长度的进行聚合统计数量
# awk不识别unicode,所以长度都是按字节算的,可以使用gawk工具来取代
# awk支持字典数据结构和循环控制语句,所以可以干聚合的事
bash> cat groups.txt | awk -F';' '{print length($2)-2}' | \
> awk '{g[$1]+=1} END{for (l in g) print l,"=",g[l]}'
22 = 1
3 = 2
4 = 1
24 = 9
6 = 6
...
排序和去重
排序命令是一种消耗内存的运算,它需要将全部的内容放置到内存的数组里,然后使用排序算法进行内容排序后输出。shell的排序就是sort命令,sort可以按字符排序也可以按数字排序。
# 以分号作为分隔符,排序第一列小组的ID
# 默认按字符进行排序
bash> cat groups.txt | sort -t';' -k1 | head -n 5
102;"说文解字";"2012-03-19 18:10:47+08"
103;"广告研发局";"2012-03-21 17:50:02+08"
104;"掀起你的内幕来";"2012-03-26 17:23:11+08"
105;"一分钟学堂";"2012-03-28 17:06:37+08"
106;"泥瓦匠";"2012-04-11 21:30:34+08"
# 加上-n选项按数字进行排序
bash> cat groups.txt | sort -t';' -n -k1 | head -n 5
27;"DIY";"2010-10-20 16:20:43+08"
28;"健康朝九晚五";"2010-10-20 16:20:43+08"
29;"爱宠";"2010-10-20 16:20:44+08"
30;"性 情";"2010-10-20 16:20:44+08"
31;"谋杀 现场 法医";"2010-10-20 16:20:44+08"
# 加上-r选项倒排
bash> cat groups.txt | sort -t';' -n -r -k1 | head -n 5
303;"怎么玩小组";"2013-06-05 13:18:06.079734+08"
302;"**精选";"2013-06-05 13:15:52.187787+08"
301;"土木建筑之家";"2013-06-05 13:14:58.968257+08"
300;"NBA那些事儿";"2013-06-03 15:50:14.415515+08"
299;"数据江湖";"2013-05-30 17:27:10.514241+08"
去重的命令时uniq,但是跟SQL的distinct不一样,uniq一般和sort配合使用,它要求去重的对象必须是排过序的,否则就不能起到去重的效果。distinct一般是在内存里记录一个Set放入所有的值,然后查询新值是否在Set中。uniq只记录一个值,就是上一行的值,然后看新行的值是否和上一行的值一样。
# 打印第二列小组名称的长度的所有可能的值的个数
# awk打印长度,sort -n按长度数字排序, uniq去重,wc -l统计个数
bash> cat groups.txt | awk -F';' '{print length($2)-2}' | sort -n | uniq | wc -l
21
# 我们再看看,如果不排序会怎样
bash> cat groups.txt | awk -F';' '{print length($2)-2}' | uniq | wc -l
166
# 很明显这个值不是我们期望的
进程替换操作符 <()
有很多指令可以接受一个文件名作为参数,然后对这个文件进行文本处理。如果输入不是文件而是由一串命令生成的动态文件怎么办呢?也许你会想到先将这一串命令输出到临时文件中再将这个临时文件名作为指令的输入,处理完毕后再删除这个临时文件。
# 首先创建临时文件
bash> mktemp
/var/folders/w3/4z1zbpdn6png5y3bl0pztph40000gn/T/tmp.LoWLFvJp
# 输出到临时文件
bash> cat groups.txt | grep 技术 > /var/folders/w3/4z1zbpdn6png5y3bl0pztph40000gn/T/tmp.LoWLFvJp
# 处理临时文件,统计临时文件的行数
bash> cat /var/folders/w3/4z1zbpdn6png5y3bl0pztph40000gn/T/tmp.LoWLFvJp | wc -l
3
# 删除临时文件
bash> rm /var/folders/w3/4z1zbpdn6png5y3bl0pztph40000gn/T/tmp.LoWLFvJp
但是本文的主题是单行shell命令。你很难使用单行命令来实现上面提到的临时文件法。这时我们就需要借助于一个高级语法:进程替换。
# 等价于上面的临时文件法,进程替换符号<()
bash> cat <(cat groups.txt | grep 技术) | wc -l
3
进程替换的原理也是临时文件法,只是这里的文件路径是/dev/fd/<n>。
连表Join操作
当两个数据表有关联时,可以使用join操作进行连表查询。同样shell也有特殊的方法可以关联两个文件的内容进行查询,这个命令在shell里面也是join。考虑到性能,join指令要求两个输入文件的join字段必须是排序的。
# rank_items表里面的行为类型字段有个值为hot_group,它表示小组因为活跃而上了热门小组
# 然后系统给这个小组累积了一个score,比如
# hot_group后面跟的是小组ID,最后的值1表示score积分
bash> cat rank_items.txt | grep hot_group | head -n 5
"5aa19d6a-3482-4a92-ae20-f26218d8debd";"hot_group";"96";"2013-06-03 21:43:58.62761+08";1
"6ae0f144-33af-432b-a9af-db51938e8faf";"hot_group";"48";"2013-06-03 21:44:05.050322+08";1
"55dcb43e-e2c0-43d2-8ed7-dbec6771e7b4";"hot_group";"185";"2013-06-05 18:14:08.406047+08";1
"98a54f24-fdef-4029-ad79-90055423f5c3";"hot_group";"31";"2013-06-03 21:47:28.476056+08";1
"4284d4d5-41b9-4dfd-ada9-537332c5cbd6";"hot_group";"63";"2013-06-01 10:07:18.58019+08";1
# 现在我们来聚合一下所有小组的各自积分,然后排序取前5名
# 用grep过滤只保留包含hot_group的行
# 筛选字段,只保留小组ID和积分字段,因为小组ID前后有引号,所以得用substr去掉引号
# 用awk的聚合功能累积各小组的积分
# sort -n -r按积分数字倒排,再head -n 5取前5名展示出来
bash> cat rank_items.txt| grep hot_group | \
awk -F';' '{print substr($3, 2, length($3)-2)";"$5}' | \
awk -F';' '{scores[$1]+=$2} END{for(id in scores) print id";"scores[id]}' | \
sort -t';' -n -r -k2 | head -n 5
63;5806
30;4692
69;4605
73;3177
27;2801
# 接下来我们将上面的结果和groups.txt文件join起来,以显示小组ID对应的名称
# -t指定分隔符,两个输入分隔符必须一致
# -1 1 -2 1表示取第一个输入文件的第一个字段和第二个输入文件的第一个字段来join
# -o1.1,1.2,2.2表示输出第一个输入文件的第一第二字段和第二个输入文件的第二字段
bash> join -t';' -1 1 -2 1 -o1.1,1.2,2.2 \
<(sort -t';' -k1 groups.txt) \
<(cat rank_items.txt| grep hot_group | \
awk -F';' '{print substr($3, 2, length($3)-2)";"$5}' | \
awk -F';' '{scores[$1]+=$2} END{for(id in scores) print id";"scores[id]}' | \
sort -t';' -n -r -k2 | head -n 5)
63;"Geek笑点低";5806
69;"吃货研究所";4605
73;"美丽也是技术活";3177
# 我们看到结果只有3条,原因是有30和27两个ID在groups.txt里面找不到。
推荐资源
《Unix Shell编程》
《The AWK programming language》
《Sed & Awk 101 Hacks》
GNU Parallel http://www.gnu.org/software/parallel/
阅读相关文章,请关注公众号【码洞】