HDU 3549 Flow Problem (简单最大流问题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3549

简单明了的最大流问题,就当熟练模板了。

记得补题解的孩子都是好孩子。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define MAX 65535
#define Max 10000

using namespace std;

struct node
{
    int e;
    int w;
    int fro;
}eg[Max << 1];

int head[Max << 1];

int cont;
int add(int s,int e,int w)
{
    eg[cont].e = e;
    eg[cont].w = w;
    eg[cont].fro = head[s];
    head[s] = cont++;

    eg[cont].e = s;
    eg[cont].w = 0;
    eg[cont].fro = head[e];
    head[e] = cont++;

    return 0;
}

int dis[Max << 1];
int BFS(int s,int e)
{
    queue<int> que;
    int now;
    memset(dis,-1,sizeof (dis));

    dis[s] = 0;
    que.push(s);

    while (!que.empty())
    {
        now = que.front();
        que.pop();

        for (int i = head[now];i != -1;i = eg[i].fro)
        {
            int v = eg[i].e;
            if (dis[v] == -1 && eg[i].w > 0)
            {
                dis[v] = dis[now] + 1;

                que.push(v);
            }
        }
    }

    if (dis[e] != -1)
        return 1;

    return 0;
}

int dinic(int s,int e,int t)
{
    if (s == e)
        return t;

    int tmp = t;
    for (int i = head[s];i != -1;i = eg[i].fro)
    {
        int v = eg[i].e;
        if (dis[v] == dis[s] +1 && eg[i].w > 0)
        {
            int imin = dinic(v,e,min(t,eg[i].w));

            eg[i].w -= imin;
            eg[i ^ 1].w += imin;

            t -= imin;
        }
    }

    return tmp - t;
}



int main()
{
    int n,m;
    int N;
    int cas = 1;

    scanf ("%d",&N);

    while (N--)
    {
        int i,k;
        cont = 0;
        memset(head,-1,sizeof (head));
        scanf ("%d%d",&n,&m);
        for (i = 0;i < m;i++)
        {
            int s,e,w;
            scanf ("%d%d%d",&s,&e,&w);
            add(s,e,w);
        }

        int ans = 0;

        while (BFS(1,n))
            ans += dinic(1,n,MAX);

        printf ("Case %d: %d\n",cas++,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值