HDOJ 1010 Tempter of the Bone

题意:

   n*m的矩阵,S是出发点,D是终点,

    .是可以走的,X是不可以走的,T秒的时候D

    才会被打开,否则就出不去,输出doggie

    后能否出去。

分析:奇偶剪枝

    这个题目用一般的搜索无法完成,因为题目

    要求在指定的时间内完成,所以只好一步一

    步来啦,用DFS解决

    但是如果直接用dfs结果会超时,网上说是用

    一种奇偶剪枝的方法来间断搜索时间,

    下面是剪枝的简单理论:

map看作

       0 1 0 1 0 1

       1 0 1 0 1 0

       0 1 0 1 0 1

       1 0 1 0 1 0

       0 1 0 1 0 1

0->1 需要奇数步

0->0 需要偶数步

那么设所在位置 (x,y) 与目标位置 (dx,dy)

如果abs(x-y)+abs(dx-dy)为偶数,则说明 abs(x-y) abs(dx-dy)的奇偶性相同,需要走偶数步

如果abs(x-y)+abs(dx-dy)为奇数,那么说明 abs(x-y) abs(dx-dy)的奇偶性不同,需要走奇数步

理解为 abs(si-sj)+abs(di-dj) 的奇偶性就确定了所需要的步数的奇偶性!!

(ti-setp)表示剩下还需要走的步数,由于题目要求要在 ti时恰好到达,

那么  (ti-step) abs(x-y)+abs(dx-dy) 的奇偶性必须相同

因此 temp=ti-step-abs(dx-x)-abs(dy-y) 必然为偶数!

 

   一般这种dfs题目都需要一个map[][]记录个点的值,

   一个record[][]记录一下某点是否走过(防止走重!!)

   一个用于检测是否越界的函数isin()

   其余的就是dfs函数的设计了。

//不知道我的代码哪里错了。。。就是wa了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=10;
int n,m,t,cnt,sx,sy,gx,gy;
int dx[4]= {-1,0,0,1},dy[4]= {0,1,-1,0};
char mp[maxn][maxn];
int visit[maxn][maxn];
bool dfs(int x,int y,int cnt)
{
    int i,j,nx,ny;
    if(cnt==t&&mp[x][y]=='D')
        return true;
    if(x<1||x>n|y<1||y>m)
        return false;
    if(cnt>=t)
        return false;
    if(t-cnt<(abs(x-gx)+abs(y-gy)))
        return false;
    if((t-cnt-(int)(abs(x-gx)+abs(y-gy)))%2!=0)
        return false;
    //visit[x][y]=1;
    for(i=0; i<4; i++)
    {
        nx=x+dx[i];
        ny=y+dy[i];
        if(nx>=1&&nx<=n&&ny>=1&&ny<=m&&!visit[nx][ny]&&mp[nx][ny]!='X')
        {
            visit[nx][ny]=1;
            if(dfs(nx,ny,cnt+1))//看看如果走这条路是否能走出去(true)
                return true;
            else
                visit[nx][ny]=0;//不能走出去的话就尝试下一种方式,就算是没走过这条路,故visit要标记成0,以免影响下一次的访问
        }
    }
    return false;
}
int main()
{
    freopen("in.txt","r",stdin);
    while((scanf("%d%d%d",&n,&m,&t)!=EOF)&&(n||m||t))
    {
        memset(visit,0,sizeof(visit));
        int i,j;
        for(i=1; i<=n; i++)
        {
            getchar();
            for(j=1; j<=m; j++)
            {
                scanf("%c",&mp[i][j]);
                if(mp[i][j]=='S')
                {
                    sx=i;
                    sy=j;
                }
                if(mp[i][j]=='D')
                {
                    gx=i;
                    gy=j;
                }
            }
        }
        visit[sx][sy]=1;
        if(dfs(sx,sy,0))
            printf("YES\n");
        else
            printf("NO\n");

    }
    return 0;
}


 

//AC代码:这是参考了别人的代码后来改过的。。。orz
#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#include <cstdio>
int fangxiang[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
const int MAX=101;
char map[MAX][MAX];
int mark[MAX][MAX];
int  n,m,t;
int start_x,start_y;
int end_x,end_y;
using namespace std;
bool DFS(int x,int y,int step)
{
	int i,a,b;
	if(map[x][y]=='D'&&step==t)
	return true;
	if(x<1||x>n|y<1||y>m)
	return false;
	if(step>=t)//剪枝1:当step>=T时还没有找到D点
	return false;
	if(t-step<(abs(x-end_x)+abs(y-end_y)))//剪枝2:还需要的步数比理论上的最短距离还小
	return false;
	if((t-step-(int)(abs(x-end_x)+abs(y-end_y)))%2!=0) //剪枝3:比理论上的最短距离多出来的必是偶数
	return false;
	for(i=0;i<4;i++)
	{
		a=x+fangxiang[i][0];
		b=y+fangxiang[i][1];
		if(a<=n&&a>=1&&b>=1&&b<=m&&map[a][b]!='X'&&!mark[a][b]) //判断三个条件:1.检验_x,_y是否越界。2.看vis[][]是否访问过。3.看map[][]是否是墙
		{
			mark[a][b]=1;
			if(DFS(a,b,step+1))
			return true;
			else
			mark[a][b]=0;
		}
	}
	return false;
}
int main()
{
    //freopen("in.txt","r",stdin);
	int i,j;
	while(cin>>n>>m>>t&&(n||m||t))
	{
		memset(mark,0,sizeof(mark));
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=m;j++)
			{
			 	cin>>map[i][j];
			 	if(map[i][j]=='S')
			 	{
 					start_x=i;
 					start_y=j;
 				}
 				if(map[i][j]=='D')
 				{
				 	end_x=i;
					end_y=j;
		 		}
			}
		}
		mark[start_x][start_y]=1;
		if(DFS(start_x,start_y,0))
		cout<<"YES"<<endl;
		else
		cout<<"NO"<<endl;
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值