本文作者原创,转载请注明原创地址https://blog.csdn.net/coder_gxd/article/details/79685225
第一题 购物单
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
-----------------
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
--------------------
需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
特别提醒:不许携带计算器入场,也不能打开手机。
分析:该题没什么算法,送分题,建议使用EXCEL操作更快,不建议一点点敲程序,浪费时间、容易出错。
答案:5200元。
第二题:等差素数列
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
分析:首先要掌握素数表的获取,我采用“Eratosthenes”筛法(埃氏筛法),时间复杂度为O(n log logn)。获得素数表后,采用暴力求解,公差1,2,3......遍历得到最小公差。
小技巧:1.等差素数数列的公差只能是偶数(为奇数时,数列中会出现若干偶数,不满足素数条件)。2.暴力时,数组不易开太大(<=10^5),否则易报错,若所找数列太大,可分段寻找。
答案:210
#include <stdio.h>
#define N 100000
#define dmax 1000
int main(){
//获取素数表
int sushu[N]={0},count = 0 ;
int panduan[N]={0};
for(int i=2;i<N;i++){
if(panduan[i]==0){
sushu[count++]=i;
for(int j=i+i;j<N;j=j+i){
panduan[j]=1;
}
}
}
//暴力求解最小公差
int d,a1;//d为公差,a1为首项
for(d=2;d<dmax;d=d+2){//公差不可能为奇数,仅遍历偶数即可。
for(int i=0;i<1000;i++){
a1=sushu[i];
int temp=1;
for(int j=2;j<=10;j++){
int aj=a1+(j-1)*d;
if(panduan[aj]==0) temp++;
}
if(temp==10){
printf("%d",d);
return 0;
}
}
}
}
第三题:
金属材料被严格地堆放成金字塔形。
7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
其中的数字代表金属块的重量(计量单位较大)。最下一层的X代表30台极高精度的电子秤。假设每块原料的重量都十分精确地平均落在下方的两个金属块上,最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。电子秤的计量单位很小,所以显示的数字很大。工作人员发现,其中读数最小的电子秤的示数为:2086458231请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。
分析:本题算法并不复杂,创建一个二维数组a[30][30]放原始数据,第i行数据放在第i行0-i位置,其余位置置0。创建一个二维数组b[30][30](初始化化为0)计算重量,b[i][j]代表(i,j)位置承受的重量(不包括位置本身的重量)。
小技巧:在输入数据时,不必一个一个输入,耗时易错。可用ctrl+c(复制),ctrl+v(粘贴)。
当i=0,j=0时,b[0][0]=0;(b[i][j]不包括位置本身的重量,承重为0;)
当i!=0,j=0时,b[i][0]=a[i-1][0]*1.0/2.0+b[i-1][0]*1.0/2.0;
当i!=0,j!=0时, b[i][j]=a[i-1][j-1]*1.0/2.0+a[i-1][j]*1.0/2.0+b[i-1][j-1]*1.0/2.0+b[i-1][j]*1.0/2.0;
最后,找出最小承重的电子秤,其实际承重量/示数=转化率。承重最大的电子秤示数=实际承重量*转换率;
答案:72665192664
#include<stdio.h>
const long long min_shishu=2086458231;
int main ( ){
int a[30][30]={0};
double b[30][30]={0};
for (int i=0;i<29;i++){//输入原始数据给 a[][]
for(int j=0;j<=i;j++){
scanf("%d",&a[i][j]);
}
}
for (int i=1;i<30;i++){//计算 b[][]各个位置承重
b[i][0]=a[i-1][0]*1.0/2.0+b[i-1][0]*1.0/2.0;
for(int j=1;j<30;j++){
double temp1=a[i-1][j-1]*1.0/2.0+a[i-1][j]*1.0/2.0;
double temp2=b[i-1][j-1]*1.0/2.0+b[i-1][j]*1.0/2.0;
b[i][j]=temp1+temp2;
}
}
double min=b[29][0],max=b[29][0];
for(int j=1;j<30;j++){//找出最大最小值
if(b[29][j]>max) max=b[29][j];
if(b[29][j]<min) min=b[29][j];
}
double max_shishu=min_shishu/min*max;//转换单位
printf("%f",max_shishu);
return 0;
}
第四题 略
第五题:取数位
求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
// 求x用10进制表示时的数位长度
int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k==0) return x%10;
return _____________________; //填空
}
int main()
{
int x = 23574;
printf("%d\n", f(x,3));
return 0;
}
对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
分析:本题递归算法,
递归边界:if(len(x)-k==0) return x%10;
递归式:f(x,k)=f(x/10,k);
答案:f(x/10,k)
#include <stdio.h>
// 求x用10进制表示时的数位长度
int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k==0) return x%10;
return f(x/10,k); //填空
}
int main()
{
int x = 23574;
printf("%d\n", f(x,3));
return 0;
}
第六题:最大公共子串
比如:"abcdkkk" 和 "baabcdadabc",可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
#include <stdio.h>
#include <string.h>
#define N 256
int f(const char* s1, const char* s2)
{
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;
memset(a,0,sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1]==s2[j-1]) {
a[i][j] = __________________________; //填空
if(a[i][j] > max) max = a[i][j];
}
}
}
return max;
}
int main()
{
printf("%d\n", f("abcdkkk", "baabcdadabc"));
return 0;
}
注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。
分析:最大公共子串问题,老生常谈,采用动态规划算法,a[i][j]d的意义是s1[i-1]==s2[j-1]时,以s1[i-1]和s2[j-1]为尾端的公共子串的长度。
答案:a[i-1][j-1]+1
#include <stdio.h>
#include <string.h>
#define N 256
int f(const char* s1, const char* s2)
{
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;
memset(a,0,sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1]==s2[j-1]) {
a[i][j] = a[i-1][j-1]+1; //填空
if(a[i][j] > max) max = a[i][j];
}
}
}
return max;
}
int main()
{
printf("%d\n", f("abcdkkk", "baabcdadabc"));
return 0;
}
第七题:日期问题
输入
----
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
输入
----
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。
样例输入
----
02/03/04
样例输出
----
2002-03-04
2004-02-03
2004-03-02
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
#include <stdio.h>
#include <algorithm>
using namespace std;
struct node{
int year;
int yue;
int day;
}x[3];
bool cmp(node xx,node yy){
if(xx.year!=yy.year) return xx.year<yy.year;
else if(xx.yue!=yy.yue) return xx.yue<yy.yue;
else return xx.day<yy.day;
}
int main (){
int temp1,temp2,temp3;
scanf("%d%*c%d%*c%d",&temp1,&temp2,&temp3);
int count=0;//代表日期总数
int a,b,c;//分别代表年月日
/*年月日*/
a=temp1,b=temp2,c=temp3;
x[count].yue=b;
x[count].day=c;
if(a>=60) x[count].year=a+1900;
else x[count].year=a+2000;
if((b==1||b==3||b==5||b==7||b==8||b==10||b==12)&&(c>=0&&c<=31)){count++;}
else if((b==4||b==6||b==9||b==11)&&(c>=0&&c<=30)){count++;}
else if(b==2){
if(c>=0&&c<=28) count++;
else if(a%4==0&&a%100!=0) count++;
else if(a%100==0&&a%400==0) count++;
}
/*月日年,重复上面模板,将 a,b,c 的值更改即可 */
a=temp3;b=temp1;c=temp2;
x[count].yue=b;
x[count].day=c;
if(a>=60) x[count].year=a+1900;
else x[count].year=a+2000;
if((b==1||b==3||b==5||b==7||b==8||b==10||b==12)&&(c>=0&&c<=31)){count++;}
else if((b==4||b==6||b==9||b==11)&&(c>=0&&c<=30)){count++;}
else if(b==2){
if(c>=0&&c<=28) count++;
else if(a%4==0&&a%100!=0) count++;
else if(a%100==0&&a%400==0) count++;
}
/*日月年,重复上面模板,将 a,b,c 的值更改即可*/
a=temp3;b=temp2;c=temp1;
x[count].yue=b;
x[count].day=c;
if(a>=60) x[count].year=a+1900;
else x[count].year=a+2000;
if((b==1||b==3||b==5||b==7||b==8||b==10||b==12)&&(c>=0&&c<=31)){count++;}
else if((b==4||b==6||b==9||b==11)&&(c>=0&&c<=30)){count++;}
else if(b==2){
if(c>=0&&c<=28) count++;
else if(a%4==0&&a%100!=0) count++;
else if(a%100==0&&a%400==0) count++;
}
/*去除相同*/
if(temp1==temp2&&temp1==temp3) count=count-2;
if(temp1==temp2&&temp1!=temp3) count=count-1;
sort(x,x+count,cmp);//排序
for(int i=0;i<count;i++){//按格式打印
printf("%04d-%02d-%02d\n",x[i].year,x[i].yue,x[i].day);
}
return 0;
}
第八题:包子凑数
输入
----
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
----
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:
6
再例如,
输入:
2
4
6
程序应该输出:
INF
样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
#include <stdio.h>
const int maxn=10010;
int gcd(int x,int y){//求最大公约数
if(y==0) return x;
return gcd(y,x%y);
}
int main(){
int N;
scanf("%d",&N);
int a[N];
for(int i=0;i<N;i++) scanf("%d",&a[i]);
int yueshu=a[0];
for(int i=1;i<N;i++){
yueshu=gcd(yueshu,a[i]);
}
if(yueshu!=1) printf("INF");
else{//背包法
bool b[maxn]={0};
b[0]=true;
for(int i=0;i<N;i++){
for(int j=0;j+a[i]<maxn;j++){
if(b[j]==true) b[j+a[i]]=true;
}
}
int count=0;
for(int i=0;i<maxn;i++){
if(b[i]==false) count++;
}
printf("%d",count);
}
return 0;
}