Leetcode Course Schedule

25 篇文章 0 订阅
22 篇文章 0 订阅

Leetcode207 Course Schedule
There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

题意
共有n门课程需要学习,课程编号从0至n-1。
有些课程有先修要求,比如必须先修课程1后修课程0,用[0, 1]表示。
给出总课程数和先后修要求对,判断是否有可能完成所有课程。

分析
很显然,这是一个有向无环图的判断问题。只要所有课程中出现了环,就不可能修满所有课程。有向无环图的判断可采用dfs或bfs,至于生成图的形式可以是邻接矩阵,也可以是邻接表。为了减小时间复杂度,本题考虑采用邻接表的方法。

注意
如果采用邻接矩阵可能会导致时间超限。另外可以采用bfs的方法求是否有环。基本思路就是将入度为0的课程放入队列。直到所有课程都被完成或发现一个环。

基本步骤
1. 将每个先后修要求对导入邻接表中。
2. 将使用dfs判断是否无环:
2.1 用isVisited记录各个课程是否被访问过;
2.2 用onStack记录一条路径上的课程,判断是否有环;
2.3 有环返回true,无环继续;
3. 如有环主函数返回false,否则返回true。

AC代码

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        if (!prerequisites.size()) return true;
        vector<vector<int>> map(numCourses, vector<int>());
        for (int i = 0; i < prerequisites.size(); ++i) {
            map[prerequisites[i][0]].push_back(prerequisites[i][1]);
        }
        vector<bool> isVisited(numCourses, false);
        for (int i = 0; i < numCourses; ++i) {
            if (!isVisited[i]) {
                vector<bool> onStack(numCourses, false);
                if (hasCycle(map, i, isVisited, onStack))
                    return false;
            }
        }
        return true;
    }
    bool hasCycle(vector<vector<int>> &map, int i, vector<bool> &isVisited, vector<bool> &onStack) {
        isVisited[i] = true;
        onStack[i] = true;
        for (int k : map[i]) {
            if (onStack[k])
                return true;
            else
                if (hasCycle(map, k, isVisited, onStack))
                    return true;
        }
        onStack[i] = false;
        return false;
    }
};

如代码或分析有误,请批评指正,谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值