离开IBM多年,我依然怀念它

297c514da402ea055ba8608d22edb5fe.png

最近后台添加好友,遇到好几个来自IBM的前同事,大家本不认识,但聊起来却有一种莫名的亲近感。

掐指一算,我离开IBM已经十二年了,然而和过去老同事的联系还很紧密,大家时常会在线下聚聚。

席间难免会聊到老东家,不管是还奋战在IBM的老同事,或像我这样离开许久的毕业生,依然会回味在IBM工作时的美好时光。

我们这一代老IBM人始终还是念着公司的好,虽然现在就业市场风起云涌,IBM依然能保持口碑,在2022福布斯最佳雇主排名前三。

作为一名创业者,我在打造企业时也会时常思考。这个看似已然没落的蓝色巨人,为什么在员工眼中有如此高的口碑和评价?‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在解开这个谜题之前,我先讲一个最近遇到的小故事:

小明是一家互联网大厂的商业分析师,在这家以"开水"著称的互联网头部公司里,小明从来就没有什么归属感,只是看在薪水和公司行业地位的份上,努力做好一颗螺丝钉。

然而疫情开始后,公司开始了一系列降本增效的骚操作:一拨又一拨的裁员,天天内卷材料,10点不到岗算违纪,甚至连办公室里净化空气的绿萝都惨被裁撤……。一系列的"组合拳"让小明对公司本就负面的评价雪上加霜,忍无可忍下,她跳槽去了竞对,选择站在了前公司的对立面。‍‍‍‍‍‍‍

引语:民企的"人肉电池"和外企的"职业培养"

小明的故事绝非个例,在民营企业里,员工普遍缺乏对企业的认同感。很多员工离开公司后,不但不会感恩,甚至还会对前任雇主产生发自内心的憎恨。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

出现这种反目成仇的原因,还在企业自身。一直以来,国内企业,尤其是国内互联网企业从来就不关注员工体验。在刺眼的白帜灯下,一览无余的工位一字排开,员工如同电池般排列得整整齐齐,为公司的发展提供源源不断的动力,直到榨干价值,最后被"新鲜电池"替代。‍‍‍‍‍‍‍‍‍

而在一些外资企业,特别是欧美企业,员工对企业的认同感却很高。我作为一个校招毕业就加入IBM的"纯蓝",即便已经离开老东家十几年,但内心一直对它充满了感激。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这种感激之情绝非个例,而是大部分从IBM毕业员工的共同情感。也许它现在已经不再是当年那个科技行业的巨无霸,但在员工眼中,它依然是一个让人怀念和尊敬的雇主。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在开始创业后,我一直在思考,到底是什么导致民企和外企有如此巨大的人文反差?在我和很多职场人士沟通后,抛去企业成本不谈,视人为人、文化传承和仪式感三点或许是两者有如此差异的关键。

01

视人为人

视人为人是一个企业对员工最大的尊重。

在刚刚加入IBM时,印象最深的就是IBM的新生培训。

作为互联网大厂的团队管理者,我也曾参与到公司对校招生的培训课程开发和培训实践中。与IBM的校招培训相比,互联网大厂的培训更像是工具培训:培训公司制度——不能做什么;培训业务场景——工作内容是什么;培训技术工具——工作该怎么做……。

整个培训除2天脱产外(一般是周五一天,周六一天),其余培训全部是以线上课程形式授课,要求学员自行学习,这也自然就不会影响正常工作。一套培训下来,如果一定要说学员学到了什么,那就是对于自己的工作内容和范围有了较为清晰的认知,更有利于后续做好一块"人肉电池"。

我还记得当年刚加入IBM,第一件事就是新生封闭培训——入职的校招生被拉到北京长城喜来登饭店进行为期一周的封闭培训。整个培训的核心是社交与合作,让一届入职的校招生一起学习和训练,不但能够便于大家了解对方的职能,更能建立同一届校招生的链接。

整个培训中有两部分内容至今让我记忆犹新:一部分是关于个人职业软技能的课程,比如演讲能力、PPT写作能力等等,这些知识和技能至今都让我受用无穷;另一部分则是花了大量时间培训关于职场性骚扰的界定和要求。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

当时培训的老师叫Johns,是一个在IBM工作近7年的员工:"作为一名职场人士,你们的职业生涯才刚刚开始。专业技能和行业知识可以慢慢学习,毕竟职级还低,这方面弱一些影响不大,弥补起来也很快。"

"但是一些软技能,比如邮件写作、沟通表达这些,我希望你们越早掌握越好。因为这些技能需要长期的学习和练习才能掌握。而且这类技能和专业和行业无关,不管你们未来还在不在IBM,都会对你们的职业生涯带来很大的帮助。"

"至于职场性骚扰",我记得他讲到这里时表情非常严肃,"我也希望大家要认真学习,在自己未来的职业中特别注意,不要犯这样的问题"‍

"毕竟每个人都有妻女,我想这样的事情没有人希望发生在自己身上。作为一个职场人,要有职业底线,而职场性骚扰就是你们必须要遵守的底线。我希望我的学生,不要犯这样低级的错误。"

Johns是我在IBM遇到的第一位老师,但我感觉他更像是我的一位兄长,在努力的帮助所有刚刚踏入职场的"菜鸟们"构建职业的底线。‍‍‍‍‍‍‍‍

IBM的校招生培训时间跨度大约半年,期间每次培训都是脱产集中培训。而培训更多集中在对参加者的价值观和底层能力建设上。

作为一个参与者,我感受到的是企业更看重对员工长期职业发展的培养,而不是急于从员工身上收回什么成本,榨取什么收益。‍‍‍‍‍‍‍‍‍‍‍

这种视人为人的价值观在很多外企里十分普遍。就拿裁员来说,国内互联网裁员不给赔偿的大有人在,给到N+1的就算良心了,而且不少企业卡着发年终奖的时间裁员,用年终奖来支付N+1赔偿。‍‍‍‍‍‍‍‍‍‍

很多良心雇主外企,赔偿是N+3、N+6甚至最近听说Google裁员是N+9。而且裁员不会影响年终奖,甚至还提前完成股票归属,切实保障员工应得利益。‍‍‍‍‍‍‍‍‍‍‍‍‍‍

是这些外企傻么?还是外企喜欢"败家"?

其实这些跨国公司都是几十年甚至上百年的企业,它们深刻的认知到,重视员工的企业文化是百年基业的基础。今天看似省了一些钱,但如果影响了在员工中的口碑,企业也就失去未来获得人才的来源。对于一家企业而言,失去了人才,谈何未来。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

那么这种企业文化又是如何长久保持下来的呢?

02

文化传承

文化传承是企业文化持久弥新的基础。

文化这个东西,说起来很虚,但却真的能影响一个人的思想。而文化传承最好的载体不是文档和制度,而是一个个活生生的人。

‍‍‍

IBM很看重Pure Blue(纯蓝——指校招毕业后就加入公司的员工),当时蓝色巨人的社招名额非常少,大量的HC都用在了校招生的招聘上。因此IBM里有很多一毕业就在公司工作并且工作年限很久的人,而这每一个人都是IBM文化的传承者和传播者。

我在IBM的第一个项目是跟着非哥,一个工作8年的IBMer,他也是我在IBM的Mentor。和Johns一样,非哥并不是把我当成一名员工,而是把我当成一个弟弟在培养。

有两件事我记忆犹新。

一件事,是我在项目中犯了一个严重的错误,导致一张线上库表的数据出了问题。在非哥帮我处理完问题后,我以为自己会被他狠狠地批评一顿。然而非哥不但没有批评我,还不断的开导我,让我放宽心,之后他的一席话,让我牢记了一辈子。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

"你刚刚参加工作,出错是难免的。我希望你能够把你未来在IBM可能犯的错,在我带你的一年时间里全部犯一遍。这个时间里,你是校招生,是我的Mentee,有我扛着。这样等你独立做项目后,就能少犯甚至不犯错误了。"

看了上面的事,如果大家觉得非哥对我十分袒护,那就大错特错了。事实上,非哥平时对我十分严格。

有一次我就某件事情要给非哥做个口头汇报。当时青涩的我抓不住重点,啰啰嗦嗦讲了5分钟。当我以为汇报结束时,非哥却直接告诉我:"这件事本身没那么复杂,你在三句话内应该可以讲清楚。你回去仔细想想,等一下重新和我再说一遍。"

本以为完事的我只能灰溜溜回到工位,耐着性子重新组织语言。在我用三句话把这件事和非哥说清楚后,才算过关。而类似的这种要求,在日常工作中数不胜数。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

当我出师(IBM内晋升到Band6算出师,可以独立参与项目了)时,我特别感谢非哥,而非哥却并不在意:"当年我的Mentor也是这么带我的,如果你真的要感谢,我希望你以后有机会能够带下属时,也能像我过去带你一样,真诚、尽心尽力的对待他们"。

虽然我已经离开了IBM,但对下属的培养依然会按着非哥的方式,尽心尽力地去对待他们,用尽全力地去培养他们。而在他们感谢我时,我依然会像非哥那样回答,而这何尝不是一种文化的传承呢?

03

仪式感

注重仪式感是构建文化的重要手段。‍‍

人的一生时间很长,但真正能够记住的瞬间却不多。而仪式感能让每个平凡的日子充满期待。

外企是十分注重仪式感的,IBM尤其如此。‍‍‍‍‍‍

就以发offer为例,对于毕业生来说,拿到人生中首个offer非常有纪念意义。对于很多企业来说,可能就是简单的发一封邮件罢了,但IBM会组织一个非常盛大的kick off晚会,要求大家盛装出席,由部门老大逐一颁发,同样是发offer,但对于校招生来说是记忆犹新的。

6bd249a6393f3d8f489f9cf47e26258c.jpeg

这张照片里给我颁发offer的是当时IBM GBS(Globle Business Service)的部门老大。说实话,我不是一个喜欢照相并留存照片的人,但这张照片我却一直保留到了现在。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

去年宝洁做了一个《老简历》的活动,这是一个非常有意义且影响极大的仪式活动。作为国内快消行业的一把手,宝洁也继承了外企注重仪式的传统:这个仪式活动里,宝洁把33年来宝洁老员工的简历寄回本人并邀请他们写下对今年毕业生的祝福。

很多人觉得制造仪式感很贵、很花钱,但实际上,仪式感并不一定需要花费很多钱,但却需要实实在在,真真切切的把员工当成一个人,去理解,去体会他们作为人最底层,最真实的感受。与其说是花钱,不如说更需要把员工当成家人一样去对待。

中国的人才真的很多,多到有些过剩。而经济发展的不均衡,和教育的相对公平,让很多人是寒门贵子。‍‍‍‍‍‍‍‍‍‍‍‍

所以,像并夕夕这样的企业靠着肯给钱,依旧能够招聘到一批可以接受"坐牢式"管理手段的员工来工作,连上厕所都要计时,可能连囚犯都不如。‍

我真心希望,在未来的中国,每个打工人都能够被企业视而为人,有尊严、有体面的做一份工作,因为做"人肉电池"的滋味真的不好受,不只是肉体上的疲倦,被金钱践踏的人格更让人难以忍受。‍‍‍

很多互联网大佬想做跨世纪的企业,我想,他们要补的课还很多。

(完)

1eec4b5c01210d03b3dd4b19d5cbcaf6.png

96c4b09f8b2f1173d3359ed06661a55f.png

d889abf2b4bcda8435d7dd8e83e5f9cb.png

89f7b91ae6ba9a75bc5981174492515f.png

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值