科大讯飞的星火要燎原了!

我之前给小伙伴们推荐过不少大模型相关的产品,这些产品看起来很美,但是它们要么对国内有限制,要么是申请制/邀请制,自己想搞个账号去体验一下都是很难的事情,前一段朋友圈还经常看到有人在晒“申请通过了”,“第一次拿到xxx的体验账号”之类的东西。

不过这也容易理解,训练大模型是一件非常烧钱的事情,顶级的GPU不但非常贵,还买不到,大公司搞起来都不容易,更别说小公司了。即使是每月付费20美元的GPT4,还限制用户每天和大模型的对话次数,可见成本是很高的。

最近我看到一个消息,科大讯飞宣布:讯飞星火认知大模型面向全民开放了!

星火要燎原了!

用户可以在各大应用商店下载“讯飞星火”APP 或登陆“讯飞星火”官网直接注册使用,再也不用审核,不用邀请了。

大家可以通过我的专属二维码直接注册使用,开发者专属权益:个人开发者最高可申请400万Tokens,企业用户最高免费申请1000万Tokens

9adbe01a426af0dcb47296fd4f184344.png

开放14小时后,讯飞星火的用户数突破100万!

上个月讯飞星火发布V2.0,我就注意到在它写代码这件事儿上有突破性的进展,基于 Python 和 C++进行代码写作的能力已高度逼近 ChatGPT,差距仅为 1%和 2%。

当时我说“国内的大模型终于学会写代码了”,讯飞星火在写代码这方面应该是国内领先的

比如让它用Python创建一个贪吃蛇游戏。

bbf8f1b80f16692c6aa7cb1e216bb929.png

代码在几秒内就生成了,玩起来的效果是这样的:

799b5e594f50af34da18b9ad5e08d690.png

可以说,完成度非常高,游戏的基本功能都实现了,剩下一些细节,比如改变颜色什么的,我们可以自己稍加调整即可。

再比如让它生成一个业务强相关的代码:

有一个DSL文件(tax.dsl),你需要写一个类(DSLParser)来解析它的内容,解析的时候用一个类TaxBracket表示税率区间,用Deduction表示低免额然后用另外一个类TaxCalculator来计算应纳税额,用Java来实现

tax.dsl文件的内容如下:

// 定义税率区间
tax_bracket 1
  range: 0 - 15000
  rate: 5%


tax_bracket 2
  range: 15001 - 45000
  rate: 10%


tax_bracket 3
  range: 45001 - 120000
  rate: 20%


tax_bracket 4
  range: 120001 - 200000
  rate: 30%


tax_bracket 5  
  range: 200001 and above 
  rate: 40%


// 定义抵免额
deduction Standard
  amount: 5000


deduction Health_Insurance
  amount: 2000


deduction Retirement_Savings
  amount: 3000

对DSL解析完成以后,用户会输入类似下面的内容,你需要解析它,然后调用TaxCalculator进行计算

income: 80000
deductions: Standard, Health_Insurance, Retirement_Savings
calculate_tax

这段业务逻辑相对是比较复杂的,但是讯飞星火的代码生成的也不错。

6cff3a666640154444e7ced322a5aab3.png

a2245930674d1b6947f8ccd2af7055a1.png

d00f7f148ce36e697ca8efc4a8885c5e.png

生成的代码中有些小错误,没有考虑一些边界条件,特殊条件,程序员需要能识别出来,然后和它交互,让它修改 —— 这其实也是程序员的重要价值,以后大模型时代,程序员依然是主宰,AI只是我们的好帮手

作为程序员,除了通过聊天窗口使用大模型之外,肯定还想调用大模型的API,把大模型的能力嵌入到自己的应用当中,这个问题讯飞星火也考虑到了,它的API针对所有【星火注册用户】免费开放,可以直接注册使用,无门槛申请。 

个人用户一次性最高可申请400万Tokens,企业用户一次性最高可免费申请1000万Tokens。

上周和一些朋友聊,我发现了一个有趣的现象,有些公司已经大范围普及了基于大模型的编程助手,甚至购买了付费的服务,让大模型成为日常编程工作的一部分,极大地提升了效率。

但是还有一些公司,死守着自己的一亩三分地,就是不愿意尝试,这里边有观念的问题,也有难以搞到账号的问题。

现在讯飞星火面向全民开放,账号的问题已经干掉了,强烈建议大家都去试一试,感受一下大模型生成代码的强大能力,让大模型成为自己编程的好帮手。

扫描我的专属二维码,或者点击阅读原文,可以快速注册体验。

cac07d38daa77ea1779d18a1c71eaed5.png

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值