概念
原函数
设函数 F ( x ) F(x) F(x)在区间 I I I上可导,对区间 I I I上的每一点都有 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x),则称函数 F ( x ) F(x) F(x)是 f ( x ) f(x) f(x)在区间 I I I上的一个原函数
- 提到原函数一般要指明区间,不加特别说明的情况下一般默认为 f ( x ) f(x) f(x)的定义域
- 如果
f
(
x
)
f(x)
f(x)在区间
I
I
I上存在原函数,那么它的原函数连续且不唯一
F ( x ) = x 2 , f ( x ) = 2 x , x 2 是 2 x 的一个原函数 F ( x ) = ln x ( x > 0 ) , f ( x ) = 1 x ( x ≠ 0 ) , ln x 是 1 x 在 x > 0 上的一个原函数 F ( x ) = ln ∣ x ∣ ( x ≠ 0 ) , f ( x ) = 1 x ( x ≠ 0 ) , ln x 是 1 x 在 x ≠ 0 上的一个原函数 F ( x ) = x 2 , f ( x ) = 2 x , F ′ ( x ) = f ( x ) , x 2 是 2 x 在 x ∈ R 上的一个原函数 F ( x ) = x 2 + C , C 为任意常数 , f ( x ) = 2 x , F ′ ( x ) = f ( x ) , x 2 + C 是 2 x 在 x ∈ R 上的全体原函数 \begin{array}{} F(x)=x^2,f(x)=2x,x^2是2x的一个原函数 \\ F(x)=\ln x(x>0),f(x)=\frac{1}{x}(x\ne 0),\ln x是 \frac{1}{x}在x>0上的一个原函数 \\ F(x)=\ln |x|(x\ne0),f(x)=\frac{1}{x}(x\ne 0),\ln x是 \frac{1}{x}在x\ne0上的一个原函数 \\ F(x)=x^{2},f(x)=2x,F'(x)=f(x),x^{2}是 2x在x\in R上的一个原函数 \\ F(x)=x^{2}+C,C为任意常数, \\ f(x)=2x,F'(x)=f(x),x^{2}+C是 2x在x\in R上的全体原函数 \end{array} F(x)=x2,f(x)=2x,x2是2x的一个原函数F(x)=lnx(x>0),f(x)=x1(x=0),lnx是x1在x>0上的一个原函数F(x)=ln∣x∣(x=0),f(x)=x1(x=0),lnx是x1在x=0上的一个原函数F(x)=x2,f(x)=2x,F′(x)=f(x),x2是2x在x∈R上的一个原函数F(x)=x2+C,C为任意常数,f(x)=2x,F′(x)=f(x),x2+C是2x在x∈R上的全体原函数
不定积分
函数
f
(
x
)
f(x)
f(x)在区间
I
I
I上的所有原函数组成的集合,成为
f
(
x
)
f(x)
f(x)在区间
I
I
I上的不定积分,记作
∫
f
(
x
)
d
x
\int f(x) \, dx
∫f(x)dx
∫
2
x
d
x
=
x
2
+
C
1
∫
2
x
d
x
=
x
2
+
C
2
∫
2
x
d
x
−
∫
2
x
d
x
=
C
\begin{array}{} \int 2x \, dx=x^2+C_{1} \\ \int 2x \, dx=x^2+C_{2} \\ \int 2x \, dx -\int 2x \, dx =C \end{array}
∫2xdx=x2+C1∫2xdx=x2+C2∫2xdx−∫2xdx=C
- 若 F ( x ) F(x) F(x)是 f ( x ) f(x) f(x)在区间 I I I上的一个原函数,那么 ∫ f ( x ) d x = F ( x ) + C , C ∈ R \int f(x) \, dx=F(x)+C,C \in R ∫f(x)dx=F(x)+C,C∈R
- 求导数与求不定积分互为逆运算
- 不定积分运算时出现任意常数时,一般的运算为 C ± C = C , C 2 = C C\pm C=C,C^{2}=C C±C=C,C2=C
性质
基本性质
设
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)均存在原函数
∫
[
f
(
x
)
±
g
(
x
)
]
d
x
=
∫
f
(
x
)
d
x
±
∫
g
(
x
)
d
x
\int [f(x)\pm g(x)] \, dx=\int f(x) \, dx \pm \int g(x) \, dx
∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
∫
k
f
(
x
)
d
x
=
k
∫
f
(
x
)
d
x
(
k
∈
R
,
k
≠
0
)
\int kf(x) \, dx=k\int f(x) \, dx(k \in R,k \ne 0)
∫kf(x)dx=k∫f(x)dx(k∈R,k=0)
(
∫
f
(
x
)
d
x
)
′
=
f
(
x
)
或
d
∫
f
(
x
)
d
x
=
f
(
x
)
d
x
\left( \int f(x) \, dx \right)'=f(x)或 d \int f(x) \, dx=f(x)dx
(∫f(x)dx)′=f(x)或d∫f(x)dx=f(x)dx
∫
F
′
(
x
)
d
x
=
F
(
x
)
+
C
或
∫
d
F
(
x
)
d
x
=
F
(
x
)
+
C
\int F'(x) \, dx=F(x)+C或 \int dF(x) \, dx=F(x)+C
∫F′(x)dx=F(x)+C或∫dF(x)dx=F(x)+C
k为与积分变量无关的常数或变量(非零)
- 当 k = 0 k=0 k=0时, ∫ k f ( x ) d x = ∫ 0 f ( x ) d x = C \int kf(x) \, dx=\int 0f(x) \, dx=C ∫kf(x)dx=∫0f(x)dx=C,而 k ∫ f ( x ) d x = 0 ⋅ [ F ( x ) + C ] = 0 k\int f(x) \, dx=0\cdot[F(x)+C]=0 k∫f(x)dx=0⋅[F(x)+C]=0,两边是不相等的
- 不定积分满足线性性质
方法
公式法
∫
x
a
d
x
=
1
a
+
1
x
a
+
1
+
C
(
a
≠
−
1
)
\int x^{a} \, dx=\frac{1}{a+1}x^{a+1}+C(a\ne-1)
∫xadx=a+11xa+1+C(a=−1)
∫
1
x
d
x
=
ln
∣
x
∣
+
C
\int \frac{1}{x} \, dx=\ln|x|+C
∫x1dx=ln∣x∣+C
∫
a
x
d
x
=
1
ln
a
a
x
+
C
(
a
>
0
且
a
≠
1
)
\int a^{x} \, dx=\frac{1}{\ln a}a^{x}+C(a>0且a\ne 1)
∫axdx=lna1ax+C(a>0且a=1)
∫
e
x
d
x
=
e
x
+
C
\int e^{x} \, dx=e^{x}+C
∫exdx=ex+C
∫
cos
x
d
x
=
sin
x
+
C
\int \cos x \, dx=\sin x+C
∫cosxdx=sinx+C
∫
sin
x
d
x
=
−
cos
x
+
C
\int \sin x \, dx =-\cos x+C
∫sinxdx=−cosx+C
∫
sec
2
x
d
x
=
tan
x
+
C
\int \sec^2x \, dx=\tan x+C
∫sec2xdx=tanx+C
∫
csc
2
x
d
x
=
−
cot
x
+
C
\int \csc^2x \, dx=-\cot x+C
∫csc2xdx=−cotx+C
∫
sec
x
tan
x
d
x
=
sec
x
+
C
\int \sec x\tan x \, dx=\sec x+C
∫secxtanxdx=secx+C
∫
csc
x
cot
x
d
x
=
−
csc
x
+
C
\int \csc x\cot x \, dx=-\csc x+C
∫cscxcotxdx=−cscx+C
∫
1
1
+
x
2
d
x
=
arctan
x
+
C
\int \frac{1}{1+x^{2}} \, dx=\arctan x+C
∫1+x21dx=arctanx+C
∫
1
1
−
x
2
d
x
=
arcsin
x
+
C
\int \frac{1}{\sqrt{ 1-x^{2} }} \, dx=\arcsin x+C
∫1−x21dx=arcsinx+C
第一换元积分法(凑微分)
设
f
(
u
)
f(u)
f(u)有一个原函数
F
(
u
)
F(u)
F(u),
u
=
φ
(
x
)
u=\varphi(x)
u=φ(x)可导,
∫
f
[
φ
(
x
)
]
φ
′
(
x
)
d
x
=
∫
f
[
φ
(
x
)
]
d
φ
(
x
)
=
∫
f
(
u
)
d
u
=
F
(
u
)
+
C
=
F
[
φ
(
x
)
]
+
C
\begin{array}{} \int f[\varphi(x)]\varphi'(x) \, dx=\int f[\varphi(x)] \, d\varphi(x)= \\ \int f(u) \, du=F(u)+C=F[\varphi(x)]+C \end{array}
∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)=∫f(u)du=F(u)+C=F[φ(x)]+C
理论依据:
d
φ
(
x
)
=
φ
′
(
x
)
d
x
d\varphi(x)=\varphi'(x)dx
dφ(x)=φ′(x)dx(双向)
d
(
x
2
)
=
2
x
d
x
,
d
(
x
3
)
=
3
x
2
d
x
,
d
ln
x
=
1
x
d
x
2
x
d
x
=
d
(
x
2
+
C
)
,
3
x
2
d
x
=
d
(
x
3
+
C
)
,
1
x
d
x
=
d
(
ln
x
+
C
)
\begin{array}{} d(x^{2})=2xdx,d(x^{3})=3x^{2}dx,d\ln x=\frac{1}{x}dx \\ 2xdx=d(x^{2}+C),3x^{2}dx=d(x^{3}+C), \frac{1}{x}dx=d(\ln x+C) \end{array}
d(x2)=2xdx,d(x3)=3x2dx,dlnx=x1dx2xdx=d(x2+C),3x2dx=d(x3+C),x1dx=d(lnx+C)
∫
e
2
2
x
d
x
=
∫
e
x
2
d
x
2
=
∫
e
t
d
t
=
e
t
+
C
=
e
2
+
C
\int e^{2}2x \, dx=\int ex^{2} \, dx^{2} =\int e^{t} \, dt=e^{t}+C=e^{2}+C
∫e22xdx=∫ex2dx2=∫etdt=et+C=e2+C
∫
e
x
2
+
1
2
x
d
x
=
∫
e
x
2
+
1
d
(
x
2
+
1
)
=
∫
e
t
d
t
=
e
t
+
C
=
e
x
2
+
1
+
C
\int e^{x^{2}+1}2x \, dx=\int e^{x^{2}+1} \, d(x^{2}+1)=\int e^{t} \, dt=e^{t}+C=e^{x^{2}+1}+C
∫ex2+12xdx=∫ex2+1d(x2+1)=∫etdt=et+C=ex2+1+C
例
∫
(
7
x
−
9
)
99
d
x
=
∫
(
7
x
−
9
)
99
1
7
⋅
d
(
7
x
−
9
)
=
1
7
∫
t
99
d
t
=
1
7
⋅
1
100
⋅
t
100
=
1
100
(
7
x
−
9
)
100
+
C
\begin{array}{} \int (7x-9)^{99} \, dx \\ =\int (7x-9)^{99} \frac{\,1}{7}\cdot d(7x-9) \\ =\frac{1}{7}\int t^{99} \, dt \\ =\frac{1}{7}\cdot \frac{1}{100} \cdot t^{100} \\ =\frac{1}{100} (7x-9)^{100}+C \end{array}
∫(7x−9)99dx=∫(7x−9)9971⋅d(7x−9)=71∫t99dt=71⋅1001⋅t100=1001(7x−9)100+C
d
(
7
x
−
9
)
=
7
d
x
d(7x-9)=7dx
d(7x−9)=7dx
d
x
=
1
7
d
(
7
x
−
9
)
dx=\frac{1}{7}d(7x-9)
dx=71d(7x−9)
- 第一换元积分法就是凑微分
- 何时使用凑微分是难点,关键是熟悉凑微分公式
- 把哪一项凑微分,原则是欺软怕硬,把容易积分的项凑微分
遇到分母三角函数偶次幂时,考虑弦化切割
常用的凑微分公式
arctan
x
+
arctan
1
x
=
π
2
\arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}
arctanx+arctanx1=2π
x
d
x
=
d
(
2
3
x
3
2
)
\sqrt{ x }dx=d\left( \frac{2}{3}x^{\frac{3}{2}} \right)
xdx=d(32x23)
d
x
x
=
2
d
x
\frac{dx}{\sqrt{ x }}=2d\sqrt{ x }
xdx=2dx
(
ln
x
+
1
)
d
x
=
d
x
ln
x
(\ln x+1)dx=dx\ln x
(lnx+1)dx=dxlnx
ln
x
d
x
=
d
(
x
(
ln
x
−
1
)
)
\ln xdx=d(x(\ln x-1))
lnxdx=d(x(lnx−1))
x
(
ln
x
−
1
)
=
d
ln
x
x(\ln x-1)=d\ln x
x(lnx−1)=dlnx
(
x
sec
2
x
+
tan
x
)
d
x
=
d
x
tan
x
(x\sec^{2}x+\tan x)dx=dx\tan x
(xsec2x+tanx)dx=dxtanx
(
x
+
1
)
e
x
d
x
=
d
x
e
x
(x+1)e^{x}dx=dxe^{x}
(x+1)exdx=dxex
∫
f
(
x
3
2
)
x
d
x
=
2
3
∫
f
(
x
3
2
)
d
(
x
3
2
)
\int f\left( x^{\frac{3}{2}} \right)\sqrt{ x } \, dx=\frac{2}{3}\int f(x^{\frac{3}{2}}) \, d(x^{\frac{3}{2}})
∫f(x23)xdx=32∫f(x23)d(x23)
∫
f
(
x
)
x
d
x
=
2
∫
f
(
x
)
d
x
\int \frac{f(\sqrt{ x })}{\sqrt{ x }} \, dx=2\int f(\sqrt{ x }) \, d\sqrt{ x }
∫xf(x)dx=2∫f(x)dx
∫
(
x
ln
x
)
(
ln
x
+
1
)
d
x
=
∫
f
(
x
ln
x
)
d
(
x
ln
x
)
\int (x\ln x)(\ln x+1) \, dx=\int f(x\ln x) \, d(x\ln x)
∫(xlnx)(lnx+1)dx=∫f(xlnx)d(xlnx)
∫
f
(
x
ln
x
−
x
)
ln
x
d
x
=
∫
f
(
x
ln
x
−
x
)
d
(
x
ln
x
−
x
)
\int f(x\ln x-x)\ln x \, dx=\int f(x\ln x-x) \, d(x\ln x-x)
∫f(xlnx−x)lnxdx=∫f(xlnx−x)d(xlnx−x)
∫
f
(
x
tan
x
)
(
x
sec
2
x
+
tan
x
)
d
x
=
∫
f
(
x
tan
x
)
d
(
x
tan
x
)
\int f(x\tan x)(x\sec^{2}x+\tan x) \, dx=\int f(x\tan x) \, d(x\tan x)
∫f(xtanx)(xsec2x+tanx)dx=∫f(xtanx)d(xtanx)
∫
f
(
x
e
x
)
(
x
e
x
+
e
x
)
d
x
=
∫
f
(
x
e
x
)
d
(
x
e
x
)
\int f(xe^{x})(xe^{x}+e^{x}) \, dx=\int f(xe^{x}) \, d(xe^{x})
∫f(xex)(xex+ex)dx=∫f(xex)d(xex)
第二换元积分法(三角换元)
a
x
+
b
\sqrt{ ax+b }
ax+b,
t
=
a
x
+
b
t=\sqrt{ ax+b }
t=ax+b
a
2
−
x
2
\sqrt{ a^{2}-x^{2} }
a2−x2,
x
=
a
sin
t
x=a\sin t
x=asint
1
+
tan
2
x
=
sec
2
x
1+\tan^{2}x=\sec^{2}x
1+tan2x=sec2x
sin
2
x
+
cos
2
x
=
1
\sin ^{2}x+\cos^{2}x=1
sin2x+cos2x=1
sec
2
x
−
1
=
tan
2
x
\sec^{2}x-1=\tan^{2}x
sec2x−1=tan2x
x
2
−
a
2
\sqrt{ x^{2}-a^{2} }
x2−a2,
x
=
a
sec
t
x=a\sec t
x=asect
a
2
+
x
2
\sqrt{ a^{2}+x^{2} }
a2+x2,
x
=
a
tan
t
x=a\tan t
x=atant
分部积分法
分部积分公式
∫
u
v
′
d
x
=
u
v
−
∫
u
′
v
d
x
\int uv' \, dx=uv-\int u'v \, dx
∫uv′dx=uv−∫u′vdx
或
∫
u
d
v
=
u
v
−
∫
v
d
u
\int u \, dv=uv-\int v \, du
∫udv=uv−∫vdu
让幂函数去求导,变成常数1
∫
sin
2
x
d
x
=
∫
1
−
cos
2
x
2
d
x
=
1
2
x
−
sin
2
x
4
+
C
\int \sin^{2}x \, dx=\int \frac{1-\cos2x}{2} \, dx= \frac{1}{2}x-\frac{\sin2x}{4}+C
∫sin2xdx=∫21−cos2xdx=21x−4sin2x+C
ln
x
\ln x
lnx和
arctan
x
\arctan x
arctanx求完导之后都是幂函数
有时候需要凑1来积分,或者使用省略的公式
u
(
x
)
u(x)
u(x)的选取原则,
反、对
>
幂
>
指、三
反、对>幂>指、三
反、对>幂>指、三
(
1
1
−
x
)
′
=
1
(
1
−
x
)
2
\left( \frac{1}{1-x} \right)'= \frac{1}{(1-x)^{2}}
(1−x1)′=(1−x)21
∫
x
1
−
x
2
d
x
=
−
1
−
x
2
+
C
\int \frac{x}{\sqrt{ 1-x^{2} }} \, dx=-\sqrt{ 1-x^{2} }+C
∫1−x2xdx=−1−x2+C
常考题型
有理函数的积分
有理函数
形如
P
n
(
x
)
Q
m
(
x
)
\frac{Pn(x)}{Qm(x)}
Qm(x)Pn(x)的分式称为有理函数,其中
P
n
(
x
)
Pn(x)
Pn(x)为
n
n
n次多项式,
Q
m
(
x
)
Qm(x)
Qm(x)为
m
m
m次多项式
有理函数积分计算的基本思想是拆分
待定系数法
拆分的方法大致分成三种
- 分母形如 ( x + a ) f ( x ) (x+a)f(x) (x+a)f(x),则对应拆出一项 A x + a \frac{A}{x+a} x+aA
- 分母形如 ( x + a ) 2 f ( x ) (x+a)^{2}f(x) (x+a)2f(x),则对应拆出两项 A x + a + B ( x + a ) 2 \frac{A}{x+a}+\frac{B}{(x+a)^{2}} x+aA+(x+a)2B
- 分母形如
(
x
2
+
a
x
+
b
)
f
(
x
)
(x^{2}+ax+b)f(x)
(x2+ax+b)f(x),则对应拆出一项
A
x
+
B
x
2
+
a
x
+
b
\frac{Ax+B}{x^{2}+ax+b}
x2+ax+bAx+B,
x
2
+
a
x
+
b
x^{2}+ax+b
x2+ax+b为无实根的二次多项式
拆成一次项,二次项
特殊值求系数
裂项
若分子可拆分为分母的两项的和或差,可直接裂项
当两项次数不同时,可考虑分子分母同时乘以
x
x
x
可化为有理函数的积分
1. 三角有理式
三角有理式,将有理函数中的
x
x
x换为三角函数,即三角有理式
降幂公式
cos
2
x
=
cos
2
x
−
sin
2
x
=
2
cos
2
x
−
1
=
1
−
2
sin
2
x
\begin{array}{} \cos 2x=\cos^{2}x-\sin^{2}x \\ =2\cos^{2}x-1 \\ =1-2\sin^{2}x \end{array}
cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
sin
2
x
=
2
sin
x
cos
x
\sin 2x=2\sin x\cos x
sin2x=2sinxcosx
是偶数次的三角有理式,用降幂,二倍角公式
是奇数次的三角有理式,拆出一个凑微,剩下的用诱导公式
∫
sin
n
x
cos
m
x
d
x
\int \sin^{n}x\cos^{m}x \, dx
∫sinnxcosmxdx
- n和m均为偶数,用倍角公式进行降幂化简被积函数后再积分
- n,m中至少有一个为奇数,则将奇次幂因子拆出一个一次幂因子并与
d
x
dx
dx凑微分,剩下的偶次幂因子用诱导公式转化为同一种三角函数
sin x = − d cos x \sin x=-d\cos x sinx=−dcosx
cos x d x = d sin x \cos xdx=d\sin x cosxdx=dsinx - 没有奇数次幂,可以分子分母同乘,创造一个奇数次幂
∫ sin n x cos m x d x \int \frac{\sin^{n}x}{\cos^{m}x} \, dx ∫cosmxsinnxdx - 分母是两项,分母不能提奇数次幂因子的话,把分子拆成分母和分母的导数的线性组合
∫ c sin x + d cos x a sin x + b cos x d x \int \frac{c\sin x+d\cos x}{a\sin x+b\cos x} \, dx ∫asinx+bcosxcsinx+dcosxdx - 万能公式
t = tan x 2 t=\tan \frac{x}{2} t=tan2x
sin x = 2 t 1 + t 2 \sin x=\frac{2t}{1+t^{2}} sinx=1+t22t
cos x = 1 − t 2 1 + t 2 \cos x=\frac{1-t^{2}}{1+t^{2}} cosx=1+t21−t2
2. 指数有理式
仅含有指数函数
a
x
a^{x}
ax的不定积分,直接令
t
=
a
x
t=a^{x}
t=ax,可将其化成有理式函数的不定积分
只要遇到指数,就用t代换
如果有多个指数,就让t等于底数最小的
3. 根式
令t等于根式,再反解x
- 如果根号下为一次函数 a x + b \sqrt{ ax+b } ax+b,则直接令整个根式为 t t t
- 如果根号下为二次函数,则利用三角代换
a 2 − x 2 ,令 x = a sin t \sqrt{ a^{2}-x^{2} },令x=a\sin t a2−x2,令x=asint
a 2 + x 2 ,令 x = a tan t \sqrt{ a^{2}+x^{2} },令x=a\tan t a2+x2,令x=atant
x 2 − a 2 ,令 x = a sec t \sqrt{ x^{2}-a^{2} },令x=a\sec t x2−a2,令x=asect - 如果根号下为普通的二次函数(含一次项),则先对其配方,再作对应的三角代换
∫ 1 x 2 ± a 2 d x = ln ∣ x ± x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{ x^{2} \pm a^{2} }} \, dx=\ln|x\pm \sqrt{ x^{2}\pm a^{2} }|+C ∫x2±a21dx=ln∣x±x2±a2∣+C
分部积分法的使用
变量代换法可以结合分部积分法进行使用,对于代换进
d
x
dx
dx里的
d
φ
(
t
)
d\varphi(t)
dφ(t),可以不将其计算出来,直接进行分部积分
1.
遇到反三角函数,可以考虑先换个元,进而转换成三角函数,令
t
=
arcsin
x
t=\arcsin x
t=arcsinx
公式
1
sin
x
=
csc
x
,
cos
x
sin
x
=
cot
x
,
(
csc
x
)
′
=
−
csc
x
cot
x
,
sin
2
x
+
cos
2
x
=
1
\frac{1}{\sin x}=\csc x,\frac{\cos x}{\sin x}=\cot x,(\csc x)'=-\csc x\cot x,\sin^{2}x+\cos^{2}x=1
sinx1=cscx,sinxcosx=cotx,(cscx)′=−cscxcotx,sin2x+cos2x=1
(
tan
x
)
′
=
sec
2
x
,
tan
x
=
sin
x
cos
x
,
(
cos
x
)
′
=
−
sin
x
,
(
−
sin
x
)
d
x
=
d
cos
x
(\tan x)'=\sec^{2}x,\tan x= \frac{\sin x}{\cos x},(\cos x)'=-\sin x,(-\sin x)dx=d\cos x
(tanx)′=sec2x,tanx=cosxsinx,(cosx)′=−sinx,(−sinx)dx=dcosx
(
cot
x
)
′
=
−
csc
2
x
,
(
ln
sin
x
)
′
=
cos
x
sin
x
,
1
+
cot
2
x
=
csc
2
x
(\cot x)'=-\csc^{2}x,(\ln \sin x)'=\frac{\cos x}{\sin x},1+\cot^{2}x=\csc^{2}x
(cotx)′=−csc2x,(lnsinx)′=sinxcosx,1+cot2x=csc2x
2.
遇到
∫
e
t
d
t
2
−
b
a
\int e^{t} \, d \frac{t^{2}-b}{a}
∫etdat2−b,化成
∫
e
t
2
a
t
d
t
\int e^{t} \frac{2}{a}t \, dt
∫eta2tdt再用分部
d
x
=
1
2
x
d\sqrt{ x }=\frac{1}{2\sqrt{ x }}
dx=2x1
∫
e
x
sin
x
d
x
=
e
x
2
(
sin
x
−
cos
x
)
+
C
\int e^{x}\sin x \, dx=\frac{e^{x}}{2}(\sin x-\cos x)+C
∫exsinxdx=2ex(sinx−cosx)+C
∫
e
x
cos
x
d
x
=
e
x
2
(
cos
x
+
sin
x
)
+
C
\int e^{x}\cos x \, dx=\frac{e^{x}}{2}(\cos x+\sin x)+C
∫excosxdx=2ex(cosx+sinx)+C
使用不定积分的关键是先将积分式
∫
u
(
x
)
v
′
(
x
)
d
x
\int u(x)v'(x) \, dx
∫u(x)v′(x)dx中的
v
′
(
x
)
d
x
v'(x)dx
v′(x)dx的部分凑成
d
v
(
x
)
dv(x)
dv(x),相当于要计算
v
′
(
x
)
v'(x)
v′(x)的一个原函数,这个积分的计算通过一次凑微可得
3.
若遇到
∫
e
a
x
+
b
d
x
\int e^{\sqrt{ ax+b } }\, dx
∫eax+bdx或
∫
sin
a
x
+
b
d
x
\int \sin\sqrt{ ax+b } \, dx
∫sinax+bdx或
∫
c
o
a
a
x
+
b
d
x
\int coa\sqrt{ ax+b } \, dx
∫coaax+bdx
令
a
x
+
b
=
t
\sqrt{ ax+b }=t
ax+b=t,微分要计算(求导)
若遇到
∫
arctan
a
x
+
b
d
x
\int \arctan \sqrt{ ax+b }\, dx
∫arctanax+bdx或
∫
arcsin
a
x
+
b
d
x
\int \arcsin \sqrt{ ax+b } \, dx
∫arcsinax+bdx或
∫
ln
(
C
+
a
x
+
b
)
d
x
\int \ln(C+\sqrt{ ax+b }) \, dx
∫ln(C+ax+b)dx
令
a
x
+
b
=
t
\sqrt{ ax+b }=t
ax+b=t,微分不必计算,直接用分部积分
4.
若遇到
a
x
+
b
c
x
+
d
\sqrt{ \frac{ax+b}{cx+d} }
cx+dax+b则令整个根式等于t,反解出x即可,一般要结合分部积分法
分部法除了和换元结合还和乘法公式结合
∫
f
′
(
x
)
d
x
=
f
(
x
)
+
C
\int f'(x) \, dx=f(x)+C
∫f′(x)dx=f(x)+C
除法公式,乘法公式或可以两项相消的
如果发现一个不定积分是有两项构成的,其中一项根本没法积,就可以考虑利用公式,也可以用分部积分法