人口增长模型
模型准备
世界人口增长概况
年 | 1625 | 1830 | 1930 | 1960 | 1974 | 1987 | 1999 |
---|---|---|---|---|---|---|---|
人口(亿) | 5 | 10 | 20 | 30 | 40 | 50 | 60 |
中国人口增长概况
年 | 1908 | 1933 | 1953 | 1964 | 1982 | 1990 | 1995 | 2000 |
---|---|---|---|---|---|---|---|---|
人口(亿) | 3.0 | 4.7 | 6.0 | 7.2 | 10.3 | 11.3 | 12.0 | 13.0 |
- 研究调查问题背景,找得越全越好
- 研究人口变化规律,去解释目前人口变化现状
- 制定现在的政策
如何将实际问题和现有知识挂钩
今年人口
x
0
,
年增长率
r
k
年后人口
x
k
=
x
0
(
1
+
r
)
k
指数增长模型——马尔萨斯提出
基本假设:人口
(
相对
)
增长率
r
是常数
x
(
t
)
时刻的人口
x
(
t
+
Δ
t
)
−
x
(
t
)
x
(
t
)
=
r
Δ
t
d
x
d
t
=
r
x
,
x
(
0
)
=
x
0
\begin{array}{} 今年人口x_{0},\ 年增长率r \\ k年后人口\quad x_{k}=x_{0}(1+r)^{k} \\ \\ 指数增长模型——马尔萨斯提出 \\ 基本假设:人口(相对)增长率r是常数 \\ x(t)时刻的人口\quad \frac{x(t+\Delta t)-x(t)}{x(t)}=r\Delta t \\ \frac{dx}{dt}=rx,\ x(0)=x_{0} \end{array}
今年人口x0, 年增长率rk年后人口xk=x0(1+r)k指数增长模型——马尔萨斯提出基本假设:人口(相对)增长率r是常数x(t)时刻的人口x(t)x(t+Δt)−x(t)=rΔtdtdx=rx, x(0)=x0
x
0
x_{0}
x0是定解条件初始条件
d
x
d
t
=
r
x
\frac{dx}{dt}=rx
dtdx=rx是常微分方程
分离变量法解微分方程
d
x
x
=
r
d
t
\frac{dx}{x}=r dt
xdx=rdt
两边分别求不定积分
ln
∣
x
∣
=
r
t
+
C
\ln |x|=rt+C
ln∣x∣=rt+C
叫做微分方程通解
将初始条件代入
x
(
t
)
=
x
0
e
r
t
x(t)=x_{0}e^{rt}
x(t)=x0ert
x
(
t
)
=
x
0
(
e
r
)
t
≈
x
0
(
1
+
r
)
t
x(t)=x_{0}(e^{r})^{t}\approx x_{0}(1+r)^{t}
x(t)=x0(er)t≈x0(1+r)t
随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
- 可用于短期人口增长预测
- 不符合19世纪后多数地区人口增长规律
- 仅适用于物资非常丰富的情景
19世纪后,人口增长率 r r r不是常数,逐渐下降
阻滞增长模型
人口增长到一定数量后,增长率下降的原因
资源、环境等因素对人口增长的阻滞作用
阻滞作用随人口数量增加而变大,即r是x的减函数
假设
r
(
x
)
=
r
−
s
x
(
r
,
s
>
0
)
r(x)=r-sx\ (r, s>0)
r(x)=r−sx (r,s>0)
当x很小时,r就是固有增长率或自然增长率
x
m
x_{m}
xm,人口容量(资源、环境能容纳的最大数量)
r
(
x
m
)
=
0
r(x_{m})=0
r(xm)=0
s
=
r
x
m
s=\frac{r}{x_{m}}
s=xmr
r
(
x
)
=
r
(
1
−
x
x
m
)
r(x)=r(1-\frac{x}{x_{m}})
r(x)=r(1−xmx)
代入常微分方程
d
x
d
t
=
r
(
x
)
x
=
r
x
(
1
−
x
x
m
)
\frac{dx}{dt}=r(x)x=rx\left( 1-\frac{x}{x_{m}} \right)
dtdx=r(x)x=rx(1−xmx)
d
x
d
t
\frac{dx}{dt}
dtdx就是时间改变一个单位数,人口的改变量
S形曲线,x增加先快后慢
x
t
=
x
m
1
+
(
x
m
x
0
−
1
)
e
−
r
t
x_{t}=\frac{x_{m}}{1+(\frac{xm}{x_{0}}-1)e^{-rt}}
xt=1+(x0xm−1)e−rtxm
参数估计
用阻滞增长模型作人口预报,必须先估计模型参数 r r r和 x m x_{m} xm
- 利用统计数据用最小二乘法作拟合
- r r r=0.2557, x m x_{m} xm=392.1
模型检验
用模型计算2010年美国人口,与实际数据比较
x
(
2010
)
=
274.5
x(2010)=274.5
x(2010)=274.5
实际为281.4
模型应用
预报美国2020年人口
加入2010年人口数据后重新估算模型参数
r
=
0.2490
,
x
m
=
434.0
r=0.2490,\qquad x_{m}=434.0
r=0.2490,xm=434.0
x
(
2020
)
=
306.0
x(2020)=306.0
x(2020)=306.0
数学建模一般步骤
- 模型准备
了解实际背景,明确建模目的,搜集有关信息,掌握对象特征 - 模型假设
针对问题特点和建模目的,作出合理、简化的假设,在合理与简化之间折中 - 模型构成
用数学的语言、符号描述问题,尽量采用简单的数学工具 - 模型求解
各种数学方法,软件和计算机技术 - 模型分析
结果的误差分析,统计分析,模型对数据的稳定性分析 - 模型检验
与实际现象,数据比较,检验模型的合理性,适用性
数学建模全过程
- 根据建模目的和信息将实际问题翻译成数学问题
- 选择适当的数学方法求得数学模型的解答
- 将数学语言表述的解答翻译回实际对象
- 用现实对象的信息检验得到的解答
微分方程的稳定性分析
- 对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势——平衡状态是否稳定
- 不求解微分方程,而是用微分方程稳定性理论研究平衡状态稳定性
捕鱼业的持续收获
背景
- 再生资源应适度开发——在持续稳产前提下实现最大产量或最佳效益
问题及分析 - 在捕捞量稳定的条件下,如何控制捕捞使产量最大或效益最佳
- 如果使捕捞量等于自然增长量,渔场鱼量将保持不变,则捕捞量稳定
产量模型
- 假设
x ( t ) ∼ 渔场鱼量 x(t)\sim渔场鱼量 x(t)∼渔场鱼量
- 无捕捞时鱼的自然增长服从Logistic规律
x ˙ ( t ) = f ( x ) = r x ( 1 − x N ) \dot{x}(t)=f(x)=rx\left( 1-\frac{x}{N} \right) x˙(t)=f(x)=rx(1−Nx)
r ∼ 固有增长率, N ∼ 最大鱼量 r\sim固有增长率,N\sim最大鱼量 r∼固有增长率,N∼最大鱼量 - 单位时间捕捞量与渔场鱼量成正比
h ( x ) = E x , E ∼ 捕捞强度 h(x)=Ex,\ E\sim捕捞强度 h(x)=Ex, E∼捕捞强度
- 建模
记
F ( x ) = f ( x ) − h ( x ) F(x)=f(x)-h(x) F(x)=f(x)−h(x)
捕捞情况下渔场鱼量满足
x ˙ ( t ) = F ( x ) = r x ( 1 − x N ) − E x \dot{x}(t)=F(x)=rx\left( 1-\frac{x}{N} \right)-Ex x˙(t)=F(x)=rx(1−Nx)−Ex
- 不需要求解x(t),只需要知道稳定的条件
一阶微分方程的平衡点及其稳定性
x
˙
=
F
(
x
)
\dot{x}=F(x)
x˙=F(x)
一阶非线性自治方程
F
(
x
)
=
0
F(x)=0
F(x)=0的根
x
0
x_{0}
x0就是微分方程的平衡点
x
˙
∣
x
=
x
0
=
0
\dot{x}|_{x=x_{0}}=0
x˙∣x=x0=0
设
x
(
t
)
x(t)
x(t)是方程的解,若从
x
0
x_{0}
x0某邻域的任意初值出发,都有
lim
t
→
∞
x
(
t
)
=
x
0
\lim_{ t \to \infty }x(t)=x_{0}
limt→∞x(t)=x0
称
x
0
x_{0}
x0是方程的稳定平衡点
- 不求
x
(
t
)
x(t)
x(t),有判断
x
0
x_{0}
x0稳定性的方法,直接法
近似线性方程,一阶导
x ˙ = F ′ ( x 0 ) ( x − x 0 ) \dot{x}=F'(x_{0})(x-x_{0}) x˙=F′(x0)(x−x0)
- F ′ ( x 0 ) < 0 F'(x_{0})<0 F′(x0)<0, x 0 x_{0} x0稳定
- F ′ ( x 0 ) > 0 F'(x_{0})>0 F′(x0)>0, x 0 x_{0} x0不稳定
x
˙
(
t
)
=
F
(
x
)
=
r
x
(
1
−
x
N
)
−
E
x
\dot{x}(t)=F(x)=rx\left( 1-\frac{x}{N} \right)-Ex
x˙(t)=F(x)=rx(1−Nx)−Ex
令
F
(
x
)
=
0
F(x)=0
F(x)=0
x
0
=
N
(
1
−
E
r
)
,
x
1
=
0
x_{0}=N\left( 1-\frac{E}{r} \right),\ x_{1}=0
x0=N(1−rE), x1=0
稳定性判断,代入到一阶导函数里面
F
′
(
x
0
)
=
E
−
r
,
F
′
(
x
1
)
=
r
−
E
F'(x_{0})=E-r,\ F'(x_{1})=r-E
F′(x0)=E−r, F′(x1)=r−E
E
<
r
→
F
′
(
x
0
)
<
0
,
F
′
(
x
1
)
>
0
→
x
0
稳定
,
x
1
不稳定
E<r\to F'(x_{0})<0,F'(x_{1})>0\to x_{0}稳定,x_{1}不稳定
E<r→F′(x0)<0,F′(x1)>0→x0稳定,x1不稳定
E
>
r
→
F
′
(
x
0
)
>
0
,
F
′
(
x
1
)
<
0
→
x
0
不稳定
,
x
1
稳定
E>r\to F'(x_{0})>0,F'(x_{1})<0\to x_{0}不稳定,x_{1}稳定
E>r→F′(x0)>0,F′(x1)<0→x0不稳定,x1稳定
E:单位时间的捕捞强度,r:增长率
如果单位时间捕捞强度小于增长率,
x
0
x_{0}
x0稳定,t趋于无穷大的时候,渔场的鱼量
x
t
x_{t}
xt会趋于这个点,也就是随着时间推移,渔场的鱼量会保持在这么多
如果单位时间捕捞强度大于增长率,
x
1
x_{1}
x1稳定,每天捕捞的比鱼量增加的多,t趋于无穷大的时候,渔场的鱼量趋于0
怎么使产量最大
在捕捞量稳定的条件下,控制捕捞强度使产量最大
F
(
x
)
=
f
(
x
)
−
h
(
x
)
F(x)=f(x)-h(x)
F(x)=f(x)−h(x)
x
˙
(
t
)
=
f
(
x
)
=
r
x
(
1
−
x
N
)
\dot{x}(t)=f(x)=rx\left( 1-\frac{x}{N} \right)
x˙(t)=f(x)=rx(1−Nx)
h
(
x
)
=
E
x
h(x)=Ex
h(x)=Ex
求
h
(
x
)
h(x)
h(x),并且使其最大
捕捞强度是E,也就是要求E,使得h最大
图解法
F
(
x
)
=
0
→
f
与
h
交点
P
F(x)=0\to f与h交点P
F(x)=0→f与h交点P
当P点在抛物线的顶点时,产量是最大的
P
∗
(
x
0
=
N
2
,
h
m
=
r
N
4
)
P^{*}\left( x_{0}=\frac{N}{2} ,h_{m}=r \frac{N}{4}\right)
P∗(x0=2N,hm=r4N)
E
∗
=
h
m
x
0
∗
=
r
2
E^{*}=\frac{h_{m}}{x_{0}^{*}}=\frac{r}{2}
E∗=x0∗hm=2r
控制渔场鱼量为最大鱼量一半的时候
效益模型
在捕捞量稳定的条件下,控制捕捞强度使效益最大
假设
- 鱼销售价格p
- 单位捕捞强度费用c
收入
T = p h ( x ) = p E x T=ph(x)=pEx T=ph(x)=pEx
支出
S = c E S=cE S=cE
单位时间利润
R = T − S = p E x − c E R=T-S=pEx-cE R=T−S=pEx−cE
代入稳定平衡点 x 0 = N ( 1 − E r ) x_{0}=N\left( 1-\frac{E}{r} \right) x0=N(1−rE)
R ( E ) = T ( E ) − S ( E ) = p N E ( 1 − E r ) − c E R(E)=T(E)-S(E)=pNE\left( 1-\frac{E}{r} \right)-cE R(E)=T(E)−S(E)=pNE(1−rE)−cE
求E使得R(E)最大
E R = r 2 ( 1 − c p N ) < E ∗ = r 2 E_{R}=\frac{r}{2}\left( 1-\frac{c}{pN} \right)<E^{*}=\frac{r}{2} ER=2r(1−pNc)<E∗=2r
渔场鱼量
x R = N ( 1 − E R r ) = N 2 + c 2 p x_{R}=N\left( 1-\frac{E_{R}}{r} \right)=\frac{N}{2}+\frac{c}{2p} xR=N(1−rER)=2N+2pc
h R = r N 4 ( 1 − c 2 p 2 N 2 ) h_{R}=\frac{rN}{4}\left( 1-\frac{c^{2}}{p^{2}N^{2}} \right) hR=4rN(1−p2N2c2)
捕捞过度 - 封闭式捕捞追求利润 R ( E ) R(E) R(E)最大
- 开放式捕捞只求利润
R
(
E
)
>
0
R(E)>0
R(E)>0
E R = r 2 ( 1 − c p N ) E_{R}=\frac{r}{2}\left( 1-\frac{c}{pN} \right) ER=2r(1−pNc)
R ( E ) = T ( E ) − S ( E ) = p N E ( 1 − E r ) − c E = 0 R(E)=T(E)-S(E)=pNE\left( 1-\frac{E}{r} \right)-cE=0 R(E)=T(E)−S(E)=pNE(1−rE)−cE=0
令 R ( E ) = 0 R(E)=0 R(E)=0
E s = r ( 1 − c p N ) E_{s}=r\left( 1-\frac{c}{pN} \right) Es=r(1−pNc)
R ( E ) = 0 R(E)=0 R(E)=0时的捕捞强度(临界强度) E s = 2 E R E_{s}=2E_{R} Es=2ER
临界强度下的渔场鱼量
x
s
=
N
(
1
−
E
s
r
)
=
c
p
x_{s}=N\left( 1-\frac{E_{s}}{r} \right)=\frac{c}{p}
xs=N(1−rEs)=pc
p
↑
,
c
↓
→
E
s
↑
,
x
s
↓
p\uparrow,c\downarrow\to E_{s}\uparrow,x_{s}\downarrow
p↑,c↓→Es↑,xs↓
捕捞过度
种群的相互竞争
- 一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。
- 当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量
- 建立数学模型描述两个种群相互竞争的过程,分析产生这种结局的条件
模型假设: - 有甲乙两个种群,它们独自生存时数量变化均服从Logistic规律
x ˙ 1 ( t ) = r 1 x 1 ( 1 − x 1 N 1 ) \dot{x}_{1}(t)=r_{1}x_{1}\left( 1-\frac{x_{1}}{N_{1}} \right) x˙1(t)=r1x1(1−N1x1)
x ˙ 2 ( t ) = r 2 x 2 ( 1 − x 2 N 2 ) \dot{x}_{2}(t)=r_{2}x_{2}\left( 1-\frac{x_{2}}{N_{2}} \right) x˙2(t)=r2x2(1−N2x2) - 两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比; 甲对乙有同样的作用,是相互竞争关系
模型:
x 1 ˙ ( t ) = r 1 x 1 ( 1 − x 1 N 1 − σ 1 x 2 N 2 ) \dot{x_{1}}(t)=r_{1}x_{1}\left( 1-\frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right) x1˙(t)=r1x1(1−N1x1−σ1N2x2)
x 2 ˙ ( t ) = r 2 x 2 ( 1 − σ 2 x 1 N 1 − x 2 N 2 ) \dot{x_{2}}(t)=r_{2}x_{2}\left( 1-\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right) x2˙(t)=r2x2(1−σ2N1x1−N2x2)
对于消耗甲的资源而言,乙是甲的 σ 1 \sigma_{1} σ1倍
σ 1 > 1 \sigma_{1}>1 σ1>1
对于甲增长的阻滞作用而言,乙大于甲,乙的竞争力强
模型分析:
- 找平衡点
t → ∞ t\to \infty t→∞时, x 1 ( t ) , x 2 ( t ) x_{1}(t),x_{2}(t) x1(t),x2(t)的趋向(平衡点及其稳定性)
二阶非线性自治方程
x
˙
1
(
t
)
=
f
(
x
1
,
x
2
)
,
x
˙
2
(
t
)
=
g
(
x
1
,
x
2
)
\dot{x}_{1}(t)=f(x_{1},x_{2}),\ \dot{x}_{2}(t)=g(x_{1},x_{2})
x˙1(t)=f(x1,x2), x˙2(t)=g(x1,x2)
的平衡点及其稳定性
求平衡点
P
0
(
x
1
0
,
x
2
0
)
P_{0}(x_{1}^{0},x_{2}^{0})
P0(x10,x20)的代数方程
f
(
x
1
,
x
2
)
=
0
f(x_{1},x_{2})=0
f(x1,x2)=0
g
(
x
1
,
x
2
)
=
0
g(x_{1},x_{2})=0
g(x1,x2)=0
的根
若从 P 0 P_{0} P0的某邻域的任意初值出发,都有 lim t → ∞ x 1 ( t ) = x 1 0 , lim t → ∞ x 2 ( t ) = x 2 0 \lim_{ t \to \infty }x_{1}(t)=x_{1}^{0},\ \lim_{ t \to \infty }x_{2}(t)=x_{2}^{0} limt→∞x1(t)=x10, limt→∞x2(t)=x20,称 P 0 P_{0} P0时微分方程的稳定平衡点
判断稳定性的方法——直接法
近似线性方程
x
˙
1
(
t
)
=
f
x
1
(
x
1
0
,
x
2
0
)
(
x
1
−
x
1
0
)
+
f
x
2
(
x
1
0
,
x
2
0
)
(
x
2
−
x
2
0
)
\dot{x}_{1}(t)=f_{x_{1}}(x_{1}^{0},x_{2}^{0})(x_{1}-x_{1}^{0})+f_{x_{2}}(x_{1}^{0},x_{2}^{0})(x_{2}-x_{2}^{0})
x˙1(t)=fx1(x10,x20)(x1−x10)+fx2(x10,x20)(x2−x20)
x
˙
2
(
t
)
=
g
x
1
(
x
1
0
,
x
2
0
)
(
x
1
−
x
1
0
)
+
g
x
2
(
x
1
0
,
x
2
0
)
(
x
2
−
x
2
0
)
\dot{x}_{2}(t)=g_{x_{1}}(x_{1}^{0},x_{2}^{0})(x_{1}-x_{1}^{0})+g_{x_{2}}(x_{1}^{0},x_{2}^{0})(x_{2}-x_{2}^{0})
x˙2(t)=gx1(x10,x20)(x1−x10)+gx2(x10,x20)(x2−x20)
求出
A
=
[
f
x
1
f
x
2
g
x
1
g
x
2
]
∣
P
0
A=\begin{bmatrix} f_{x_{1}}&&f_{x_{2}} \\ g_{x_{1}}&&g_{x_{2}} \end{bmatrix}|_{P_{0}}
A=[fx1gx1fx2gx2]∣P0
{
λ
2
+
p
λ
+
q
=
0
p
=
−
(
f
x
1
+
g
x
2
)
∣
P
0
q
=
det
A
\left\{\begin{matrix} \lambda^{2}+p\lambda+q=0 \\ p=-(f_{x_{1}}+g_{x_{2}})|_{P_{0}} \\ q=\det A \end{matrix}\right.
⎩
⎨
⎧λ2+pλ+q=0p=−(fx1+gx2)∣P0q=detA
若
p
>
0
p>0
p>0且
q
>
0
q>0
q>0,平衡点
P
0
P_{0}
P0稳定
若
p
<
0
p<0
p<0或
q
<
0
q<0
q<0,平衡点
P
0
P_{0}
P0不稳定
模型求解
f
(
x
1
,
x
2
)
=
r
1
x
1
(
1
−
x
1
N
1
−
σ
1
x
2
N
2
)
=
0
f(x_{1},x_{2})=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right)=0
f(x1,x2)=r1x1(1−N1x1−σ1N2x2)=0
g
(
x
1
,
x
2
)
=
r
2
x
2
(
1
−
σ
2
x
1
N
1
−
x
2
N
2
)
=
0
g(x_{1},x_{2})=r_{2}x_{2}\left( 1- \sigma_{2}\frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right)=0
g(x1,x2)=r2x2(1−σ2N1x1−N2x2)=0
平衡点
P
1
(
N
1
,
0
)
,
P
2
(
0
,
N
2
)
,
P
3
(
N
1
(
1
−
σ
1
)
1
−
σ
1
σ
2
,
N
2
(
1
−
σ
2
)
1
−
σ
1
σ
2
)
P
4
(
0
,
0
)
P_{1}(N_{1},0),\ P_{2}(0,N_{2}),\ P_{3}\left( \frac{N_{1}(1-\sigma_{1})}{1-\sigma_{1}\sigma_{2}}, \frac{N_{2}(1-\sigma_{2})}{1-\sigma_{1}\sigma_{2}} \right)\ P_{4}(0,0)
P1(N1,0), P2(0,N2), P3(1−σ1σ2N1(1−σ1),1−σ1σ2N2(1−σ2)) P4(0,0)
仅当
σ
1
σ
2
<
1
\sigma_{1}\sigma_{2}<1
σ1σ2<1或
σ
1
σ
2
<
1
\sigma_{1}\sigma_{2}<1
σ1σ2<1,
P
3
P_{3}
P3才有意义
p
=
−
(
f
x
1
+
g
x
2
)
∣
P
i
,
q
=
det
A
∣
P
i
,
i
=
1
,
2
,
3
,
4
p=-(f_{x_{1}}+g_{x_{2}})|_{P_{i}},\ q=\det A|_{P_{i}},\ i=1,2,3,4
p=−(fx1+gx2)∣Pi, q=detA∣Pi, i=1,2,3,4
平衡点
P
i
P_{i}
Pi稳定条件:p>0且q>0
P1, P2 是一个种群存活而另一灭绝的平衡点
P3 是两种群共存的平衡点
种群的相互依存
甲乙两种群的相互依存有三种形式:
- 甲可以独自生存,乙不能独自生存;甲乙一起生存时相互提供食物、促进增长。
- 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。
- 甲乙均不能独自生存;甲乙一起生存时相互提供食物、促进增长。
模型假设
- 甲可以独自生存,数量变化服从Logistic规律; 甲乙一起生存时乙为甲提供食物、促进增长
- 乙不能独自生存;甲乙一起生存时甲为乙提供食物、促进增长;乙的增长又受到本身的阻滞作用 (服从Logistic规律)。
模型
x ˙ 1 ( t ) = r 1 x 1 ( 1 − x 1 N 1 + σ 1 x 2 N 2 ) \dot{x}_{1}(t)=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}+\sigma_{1} \frac{x_{2}}{N_{2}} \right) x˙1(t)=r1x1(1−N1x1+σ1N2x2)
乙为甲提供食物是甲消耗的s1 倍
x ˙ 2 ( t ) = r 2 x 2 ( − 1 + σ 2 x 1 N 1 − x 2 N 2 ) \dot{x}_{2}(t)=r_{2}x_{2}\left(- 1+\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right) x˙2(t)=r2x2(−1+σ2N1x1−N2x2)
甲为乙提供食物是乙消耗的s2 倍
P2是甲乙相互依存而共生的平衡点
种群模型的几种形式
相互竞争
x
˙
1
(
t
)
=
r
1
x
1
(
1
−
x
1
N
1
−
σ
1
x
2
N
2
)
\dot{x}_{1}(t)=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right)
x˙1(t)=r1x1(1−N1x1−σ1N2x2)
x
˙
2
(
t
)
=
r
2
x
2
(
1
−
σ
2
x
1
N
1
−
x
2
N
2
)
\dot{x}_{2}(t)=r_{2}x_{2}\left( 1-\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right)
x˙2(t)=r2x2(1−σ2N1x1−N2x2)
相互依存
x
˙
1
(
t
)
=
r
1
x
1
(
±
1
−
x
1
N
1
+
σ
1
x
2
N
2
)
\dot{x}_{1}(t)=r_{1}x_{1}\left( \pm1- \frac{x_{1}}{N_{1}}+\sigma_{1} \frac{x_{2}}{N_{2}} \right)
x˙1(t)=r1x1(±1−N1x1+σ1N2x2)
x
˙
2
(
t
)
=
r
2
x
2
(
±
1
+
σ
2
x
1
N
1
−
x
2
N
2
)
\dot{x}_{2}(t)=r_{2}x_{2}\left( \pm1+\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right)
x˙2(t)=r2x2(±1+σ2N1x1−N2x2)
弱肉强食
x
˙
1
(
t
)
=
r
1
x
1
(
1
−
x
1
N
1
−
σ
1
x
2
N
2
)
\dot{x}_{1}(t)=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right)
x˙1(t)=r1x1(1−N1x1−σ1N2x2)
x
˙
2
(
t
)
=
r
2
x
2
(
−
1
+
σ
2
x
1
N
1
−
x
2
N
2
)
\dot{x}_{2}(t)=r_{2}x_{2}\left( -1+\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right)
x˙2(t)=r2x2(−1+σ2N1x1−N2x2)