微分方程模型(人口,捕鱼,种群模型)

人口增长模型

模型准备

世界人口增长概况

1625183019301960197419871999
人口(亿)5102030405060

中国人口增长概况

19081933195319641982199019952000
人口(亿)3.04.76.07.210.311.312.013.0
  1. 研究调查问题背景,找得越全越好
  2. 研究人口变化规律,去解释目前人口变化现状
  3. 制定现在的政策

如何将实际问题和现有知识挂钩
今年人口 x 0 ,  年增长率 r k 年后人口 x k = x 0 ( 1 + r ) k 指数增长模型——马尔萨斯提出 基本假设:人口 ( 相对 ) 增长率 r 是常数 x ( t ) 时刻的人口 x ( t + Δ t ) − x ( t ) x ( t ) = r Δ t d x d t = r x ,   x ( 0 ) = x 0 \begin{array}{} 今年人口x_{0},\ 年增长率r \\ k年后人口\quad x_{k}=x_{0}(1+r)^{k} \\ \\ 指数增长模型——马尔萨斯提出 \\ 基本假设:人口(相对)增长率r是常数 \\ x(t)时刻的人口\quad \frac{x(t+\Delta t)-x(t)}{x(t)}=r\Delta t \\ \frac{dx}{dt}=rx,\ x(0)=x_{0} \end{array} 今年人口x0, 年增长率rk年后人口xk=x0(1+r)k指数增长模型——马尔萨斯提出基本假设:人口(相对)增长率r是常数x(t)时刻的人口x(t)x(t+Δt)x(t)=rΔtdtdx=rx, x(0)=x0
x 0 x_{0} x0是定解条件初始条件
d x d t = r x \frac{dx}{dt}=rx dtdx=rx是常微分方程
分离变量法解微分方程
d x x = r d t \frac{dx}{x}=r dt xdx=rdt
两边分别求不定积分
ln ⁡ ∣ x ∣ = r t + C \ln |x|=rt+C lnx=rt+C
叫做微分方程通解
将初始条件代入
x ( t ) = x 0 e r t x(t)=x_{0}e^{rt} x(t)=x0ert
x ( t ) = x 0 ( e r ) t ≈ x 0 ( 1 + r ) t x(t)=x_{0}(e^{r})^{t}\approx x_{0}(1+r)^{t} x(t)=x0(er)tx0(1+r)t
随着时间增加,人口按指数规律无限增长

指数增长模型的应用及局限性

  • 可用于短期人口增长预测
  • 不符合19世纪后多数地区人口增长规律
  • 仅适用于物资非常丰富的情景
    19世纪后,人口增长率 r r r不是常数,逐渐下降
阻滞增长模型

人口增长到一定数量后,增长率下降的原因
资源、环境等因素对人口增长的阻滞作用
阻滞作用随人口数量增加而变大,即r是x的减函数
假设
r ( x ) = r − s x   ( r , s > 0 ) r(x)=r-sx\ (r, s>0) r(x)=rsx (r,s>0)
当x很小时,r就是固有增长率或自然增长率
x m x_{m} xm,人口容量(资源、环境能容纳的最大数量)
r ( x m ) = 0 r(x_{m})=0 r(xm)=0
s = r x m s=\frac{r}{x_{m}} s=xmr
r ( x ) = r ( 1 − x x m ) r(x)=r(1-\frac{x}{x_{m}}) r(x)=r(1xmx)
代入常微分方程
d x d t = r ( x ) x = r x ( 1 − x x m ) \frac{dx}{dt}=r(x)x=rx\left( 1-\frac{x}{x_{m}} \right) dtdx=r(x)x=rx(1xmx)
d x d t \frac{dx}{dt} dtdx就是时间改变一个单位数,人口的改变量
![[Pasted image 20240812011619.png]]
![[Pasted image 20240812034058.png]]

S形曲线,x增加先快后慢
x t = x m 1 + ( x m x 0 − 1 ) e − r t x_{t}=\frac{x_{m}}{1+(\frac{xm}{x_{0}}-1)e^{-rt}} xt=1+(x0xm1)ertxm

参数估计

用阻滞增长模型作人口预报,必须先估计模型参数 r r r x m x_{m} xm

  • 利用统计数据用最小二乘法作拟合
  • r r r=0.2557, x m x_{m} xm=392.1
模型检验

用模型计算2010年美国人口,与实际数据比较
x ( 2010 ) = 274.5 x(2010)=274.5 x(2010)=274.5
实际为281.4

模型应用

预报美国2020年人口
加入2010年人口数据后重新估算模型参数
r = 0.2490 , x m = 434.0 r=0.2490,\qquad x_{m}=434.0 r=0.2490,xm=434.0
x ( 2020 ) = 306.0 x(2020)=306.0 x(2020)=306.0

数学建模一般步骤

  1. 模型准备
    了解实际背景,明确建模目的,搜集有关信息,掌握对象特征
  2. 模型假设
    针对问题特点和建模目的,作出合理、简化的假设,在合理与简化之间折中
  3. 模型构成
    用数学的语言、符号描述问题,尽量采用简单的数学工具
  4. 模型求解
    各种数学方法,软件和计算机技术
  5. 模型分析
    结果的误差分析,统计分析,模型对数据的稳定性分析
  6. 模型检验
    与实际现象,数据比较,检验模型的合理性,适用性
数学建模全过程
  1. 根据建模目的和信息将实际问题翻译成数学问题
  2. 选择适当的数学方法求得数学模型的解答
  3. 将数学语言表述的解答翻译回实际对象
  4. 用现实对象的信息检验得到的解答

微分方程的稳定性分析

  • 对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势——平衡状态是否稳定
  • 不求解微分方程,而是用微分方程稳定性理论研究平衡状态稳定性
捕鱼业的持续收获

背景

  • 再生资源应适度开发——在持续稳产前提下实现最大产量或最佳效益
    问题及分析
  • 在捕捞量稳定的条件下,如何控制捕捞使产量最大或效益最佳
  • 如果使捕捞量等于自然增长量,渔场鱼量将保持不变,则捕捞量稳定
产量模型
  1. 假设
    x ( t ) ∼ 渔场鱼量 x(t)\sim渔场鱼量 x(t)渔场鱼量
  • 无捕捞时鱼的自然增长服从Logistic规律
    x ˙ ( t ) = f ( x ) = r x ( 1 − x N ) \dot{x}(t)=f(x)=rx\left( 1-\frac{x}{N} \right) x˙(t)=f(x)=rx(1Nx)
    r ∼ 固有增长率, N ∼ 最大鱼量 r\sim固有增长率,N\sim最大鱼量 r固有增长率,N最大鱼量
  • 单位时间捕捞量与渔场鱼量成正比
    h ( x ) = E x ,   E ∼ 捕捞强度 h(x)=Ex,\ E\sim捕捞强度 h(x)=Ex, E捕捞强度
  1. 建模

    F ( x ) = f ( x ) − h ( x ) F(x)=f(x)-h(x) F(x)=f(x)h(x)
    捕捞情况下渔场鱼量满足
    x ˙ ( t ) = F ( x ) = r x ( 1 − x N ) − E x \dot{x}(t)=F(x)=rx\left( 1-\frac{x}{N} \right)-Ex x˙(t)=F(x)=rx(1Nx)Ex
  • 不需要求解x(t),只需要知道稳定的条件
一阶微分方程的平衡点及其稳定性

x ˙ = F ( x ) \dot{x}=F(x) x˙=F(x)
一阶非线性自治方程

F ( x ) = 0 F(x)=0 F(x)=0的根 x 0 x_{0} x0就是微分方程的平衡点
x ˙ ∣ x = x 0 = 0 \dot{x}|_{x=x_{0}}=0 x˙x=x0=0
x ( t ) x(t) x(t)是方程的解,若从 x 0 x_{0} x0某邻域的任意初值出发,都有 lim ⁡ t → ∞ x ( t ) = x 0 \lim_{ t \to \infty }x(t)=x_{0} limtx(t)=x0
x 0 x_{0} x0是方程的稳定平衡点

  • 不求 x ( t ) x(t) x(t),有判断 x 0 x_{0} x0稳定性的方法,直接法
    近似线性方程,一阶导
    x ˙ = F ′ ( x 0 ) ( x − x 0 ) \dot{x}=F'(x_{0})(x-x_{0}) x˙=F(x0)(xx0)
  1. F ′ ( x 0 ) < 0 F'(x_{0})<0 F(x0)<0 x 0 x_{0} x0稳定
  2. F ′ ( x 0 ) > 0 F'(x_{0})>0 F(x0)>0 x 0 x_{0} x0不稳定

x ˙ ( t ) = F ( x ) = r x ( 1 − x N ) − E x \dot{x}(t)=F(x)=rx\left( 1-\frac{x}{N} \right)-Ex x˙(t)=F(x)=rx(1Nx)Ex
F ( x ) = 0 F(x)=0 F(x)=0
x 0 = N ( 1 − E r ) ,   x 1 = 0 x_{0}=N\left( 1-\frac{E}{r} \right),\ x_{1}=0 x0=N(1rE), x1=0
稳定性判断,代入到一阶导函数里面
F ′ ( x 0 ) = E − r ,   F ′ ( x 1 ) = r − E F'(x_{0})=E-r,\ F'(x_{1})=r-E F(x0)=Er, F(x1)=rE
E < r → F ′ ( x 0 ) < 0 , F ′ ( x 1 ) > 0 → x 0 稳定 , x 1 不稳定 E<r\to F'(x_{0})<0,F'(x_{1})>0\to x_{0}稳定,x_{1}不稳定 E<rF(x0)<0,F(x1)>0x0稳定,x1不稳定
E > r → F ′ ( x 0 ) > 0 , F ′ ( x 1 ) < 0 → x 0 不稳定 , x 1 稳定 E>r\to F'(x_{0})>0,F'(x_{1})<0\to x_{0}不稳定,x_{1}稳定 E>rF(x0)>0,F(x1)<0x0不稳定,x1稳定
E:单位时间的捕捞强度,r:增长率
如果单位时间捕捞强度小于增长率, x 0 x_{0} x0稳定,t趋于无穷大的时候,渔场的鱼量 x t x_{t} xt会趋于这个点,也就是随着时间推移,渔场的鱼量会保持在这么多
如果单位时间捕捞强度大于增长率, x 1 x_{1} x1稳定,每天捕捞的比鱼量增加的多,t趋于无穷大的时候,渔场的鱼量趋于0

怎么使产量最大

在捕捞量稳定的条件下,控制捕捞强度使产量最大
F ( x ) = f ( x ) − h ( x ) F(x)=f(x)-h(x) F(x)=f(x)h(x)
x ˙ ( t ) = f ( x ) = r x ( 1 − x N ) \dot{x}(t)=f(x)=rx\left( 1-\frac{x}{N} \right) x˙(t)=f(x)=rx(1Nx)
h ( x ) = E x h(x)=Ex h(x)=Ex
h ( x ) h(x) h(x),并且使其最大
捕捞强度是E,也就是要求E,使得h最大

图解法
![[Pasted image 20240812085113.png]]

F ( x ) = 0 → f 与 h 交点 P F(x)=0\to f与h交点P F(x)=0fh交点P
当P点在抛物线的顶点时,产量是最大的
P ∗ ( x 0 = N 2 , h m = r N 4 ) P^{*}\left( x_{0}=\frac{N}{2} ,h_{m}=r \frac{N}{4}\right) P(x0=2N,hm=r4N)
E ∗ = h m x 0 ∗ = r 2 E^{*}=\frac{h_{m}}{x_{0}^{*}}=\frac{r}{2} E=x0hm=2r
控制渔场鱼量为最大鱼量一半的时候

效益模型

在捕捞量稳定的条件下,控制捕捞强度使效益最大
假设

  • 鱼销售价格p
  • 单位捕捞强度费用c
    收入
    T = p h ( x ) = p E x T=ph(x)=pEx T=ph(x)=pEx
    支出
    S = c E S=cE S=cE
    单位时间利润
    R = T − S = p E x − c E R=T-S=pEx-cE R=TS=pExcE
    代入稳定平衡点 x 0 = N ( 1 − E r ) x_{0}=N\left( 1-\frac{E}{r} \right) x0=N(1rE)
    R ( E ) = T ( E ) − S ( E ) = p N E ( 1 − E r ) − c E R(E)=T(E)-S(E)=pNE\left( 1-\frac{E}{r} \right)-cE R(E)=T(E)S(E)=pNE(1rE)cE
    求E使得R(E)最大
    E R = r 2 ( 1 − c p N ) < E ∗ = r 2 E_{R}=\frac{r}{2}\left( 1-\frac{c}{pN} \right)<E^{*}=\frac{r}{2} ER=2r(1pNc)<E=2r
    渔场鱼量
    x R = N ( 1 − E R r ) = N 2 + c 2 p x_{R}=N\left( 1-\frac{E_{R}}{r} \right)=\frac{N}{2}+\frac{c}{2p} xR=N(1rER)=2N+2pc
    h R = r N 4 ( 1 − c 2 p 2 N 2 ) h_{R}=\frac{rN}{4}\left( 1-\frac{c^{2}}{p^{2}N^{2}} \right) hR=4rN(1p2N2c2)
    捕捞过度
  • 封闭式捕捞追求利润 R ( E ) R(E) R(E)最大
  • 开放式捕捞只求利润 R ( E ) > 0 R(E)>0 R(E)>0
    E R = r 2 ( 1 − c p N ) E_{R}=\frac{r}{2}\left( 1-\frac{c}{pN} \right) ER=2r(1pNc)
    R ( E ) = T ( E ) − S ( E ) = p N E ( 1 − E r ) − c E = 0 R(E)=T(E)-S(E)=pNE\left( 1-\frac{E}{r} \right)-cE=0 R(E)=T(E)S(E)=pNE(1rE)cE=0
    R ( E ) = 0 R(E)=0 R(E)=0
    E s = r ( 1 − c p N ) E_{s}=r\left( 1-\frac{c}{pN} \right) Es=r(1pNc)
    R ( E ) = 0 R(E)=0 R(E)=0时的捕捞强度(临界强度) E s = 2 E R E_{s}=2E_{R} Es=2ER
    ![[Pasted image 20240812145303.png]]

临界强度下的渔场鱼量
x s = N ( 1 − E s r ) = c p x_{s}=N\left( 1-\frac{E_{s}}{r} \right)=\frac{c}{p} xs=N(1rEs)=pc
p ↑ , c ↓ → E s ↑ , x s ↓ p\uparrow,c\downarrow\to E_{s}\uparrow,x_{s}\downarrow p,c↓→Es,xs
捕捞过度

种群的相互竞争
  • 一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。
  • 当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量
  • 建立数学模型描述两个种群相互竞争的过程,分析产生这种结局的条件
    模型假设:
  • 有甲乙两个种群,它们独自生存时数量变化均服从Logistic规律
    x ˙ 1 ( t ) = r 1 x 1 ( 1 − x 1 N 1 ) \dot{x}_{1}(t)=r_{1}x_{1}\left( 1-\frac{x_{1}}{N_{1}} \right) x˙1(t)=r1x1(1N1x1)
    x ˙ 2 ( t ) = r 2 x 2 ( 1 − x 2 N 2 ) \dot{x}_{2}(t)=r_{2}x_{2}\left( 1-\frac{x_{2}}{N_{2}} \right) x˙2(t)=r2x2(1N2x2)
  • 两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比; 甲对乙有同样的作用,是相互竞争关系
    模型:
    x 1 ˙ ( t ) = r 1 x 1 ( 1 − x 1 N 1 − σ 1 x 2 N 2 ) \dot{x_{1}}(t)=r_{1}x_{1}\left( 1-\frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right) x1˙(t)=r1x1(1N1x1σ1N2x2)
    x 2 ˙ ( t ) = r 2 x 2 ( 1 − σ 2 x 1 N 1 − x 2 N 2 ) \dot{x_{2}}(t)=r_{2}x_{2}\left( 1-\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right) x2˙(t)=r2x2(1σ2N1x1N2x2)
    对于消耗甲的资源而言,乙是甲的 σ 1 \sigma_{1} σ1
    σ 1 > 1 \sigma_{1}>1 σ1>1
    对于甲增长的阻滞作用而言,乙大于甲,乙的竞争力强
    模型分析:
  1. 找平衡点
    t → ∞ t\to \infty t时, x 1 ( t ) , x 2 ( t ) x_{1}(t),x_{2}(t) x1(t),x2(t)的趋向(平衡点及其稳定性)

二阶非线性自治方程
x ˙ 1 ( t ) = f ( x 1 , x 2 ) ,   x ˙ 2 ( t ) = g ( x 1 , x 2 ) \dot{x}_{1}(t)=f(x_{1},x_{2}),\ \dot{x}_{2}(t)=g(x_{1},x_{2}) x˙1(t)=f(x1,x2), x˙2(t)=g(x1,x2)
的平衡点及其稳定性

求平衡点 P 0 ( x 1 0 , x 2 0 ) P_{0}(x_{1}^{0},x_{2}^{0}) P0(x10,x20)的代数方程
f ( x 1 , x 2 ) = 0 f(x_{1},x_{2})=0 f(x1,x2)=0
g ( x 1 , x 2 ) = 0 g(x_{1},x_{2})=0 g(x1,x2)=0
的根

若从 P 0 P_{0} P0的某邻域的任意初值出发,都有 lim ⁡ t → ∞ x 1 ( t ) = x 1 0 ,   lim ⁡ t → ∞ x 2 ( t ) = x 2 0 \lim_{ t \to \infty }x_{1}(t)=x_{1}^{0},\ \lim_{ t \to \infty }x_{2}(t)=x_{2}^{0} limtx1(t)=x10, limtx2(t)=x20,称 P 0 P_{0} P0时微分方程的稳定平衡点

判断稳定性的方法——直接法
近似线性方程
x ˙ 1 ( t ) = f x 1 ( x 1 0 , x 2 0 ) ( x 1 − x 1 0 ) + f x 2 ( x 1 0 , x 2 0 ) ( x 2 − x 2 0 ) \dot{x}_{1}(t)=f_{x_{1}}(x_{1}^{0},x_{2}^{0})(x_{1}-x_{1}^{0})+f_{x_{2}}(x_{1}^{0},x_{2}^{0})(x_{2}-x_{2}^{0}) x˙1(t)=fx1(x10,x20)(x1x10)+fx2(x10,x20)(x2x20)
x ˙ 2 ( t ) = g x 1 ( x 1 0 , x 2 0 ) ( x 1 − x 1 0 ) + g x 2 ( x 1 0 , x 2 0 ) ( x 2 − x 2 0 ) \dot{x}_{2}(t)=g_{x_{1}}(x_{1}^{0},x_{2}^{0})(x_{1}-x_{1}^{0})+g_{x_{2}}(x_{1}^{0},x_{2}^{0})(x_{2}-x_{2}^{0}) x˙2(t)=gx1(x10,x20)(x1x10)+gx2(x10,x20)(x2x20)
求出
A = [ f x 1 f x 2 g x 1 g x 2 ] ∣ P 0 A=\begin{bmatrix} f_{x_{1}}&&f_{x_{2}} \\ g_{x_{1}}&&g_{x_{2}} \end{bmatrix}|_{P_{0}} A=[fx1gx1fx2gx2]P0
{ λ 2 + p λ + q = 0 p = − ( f x 1 + g x 2 ) ∣ P 0 q = det ⁡ A \left\{\begin{matrix} \lambda^{2}+p\lambda+q=0 \\ p=-(f_{x_{1}}+g_{x_{2}})|_{P_{0}} \\ q=\det A \end{matrix}\right. λ2+pλ+q=0p=(fx1+gx2)P0q=detA
p > 0 p>0 p>0 q > 0 q>0 q>0,平衡点 P 0 P_{0} P0稳定
p < 0 p<0 p<0 q < 0 q<0 q<0,平衡点 P 0 P_{0} P0不稳定

模型求解
f ( x 1 , x 2 ) = r 1 x 1 ( 1 − x 1 N 1 − σ 1 x 2 N 2 ) = 0 f(x_{1},x_{2})=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right)=0 f(x1,x2)=r1x1(1N1x1σ1N2x2)=0
g ( x 1 , x 2 ) = r 2 x 2 ( 1 − σ 2 x 1 N 1 − x 2 N 2 ) = 0 g(x_{1},x_{2})=r_{2}x_{2}\left( 1- \sigma_{2}\frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right)=0 g(x1,x2)=r2x2(1σ2N1x1N2x2)=0
平衡点 P 1 ( N 1 , 0 ) ,   P 2 ( 0 , N 2 ) ,   P 3 ( N 1 ( 1 − σ 1 ) 1 − σ 1 σ 2 , N 2 ( 1 − σ 2 ) 1 − σ 1 σ 2 )   P 4 ( 0 , 0 ) P_{1}(N_{1},0),\ P_{2}(0,N_{2}),\ P_{3}\left( \frac{N_{1}(1-\sigma_{1})}{1-\sigma_{1}\sigma_{2}}, \frac{N_{2}(1-\sigma_{2})}{1-\sigma_{1}\sigma_{2}} \right)\ P_{4}(0,0) P1(N1,0), P2(0,N2), P3(1σ1σ2N1(1σ1),1σ1σ2N2(1σ2)) P4(0,0)
仅当 σ 1 σ 2 < 1 \sigma_{1}\sigma_{2}<1 σ1σ2<1 σ 1 σ 2 < 1 \sigma_{1}\sigma_{2}<1 σ1σ2<1 P 3 P_{3} P3才有意义

p = − ( f x 1 + g x 2 ) ∣ P i ,   q = det ⁡ A ∣ P i ,   i = 1 , 2 , 3 , 4 p=-(f_{x_{1}}+g_{x_{2}})|_{P_{i}},\ q=\det A|_{P_{i}},\ i=1,2,3,4 p=(fx1+gx2)Pi, q=detAPi, i=1,2,3,4
平衡点 P i P_{i} Pi稳定条件:p>0且q>0

![[Pasted image 20240812223506.png]]

P1, P2 是一个种群存活而另一灭绝的平衡点
P3 是两种群共存的平衡点

种群的相互依存

甲乙两种群的相互依存有三种形式:

  1. 甲可以独自生存,乙不能独自生存;甲乙一起生存时相互提供食物、促进增长。
  2. 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。
  3. 甲乙均不能独自生存;甲乙一起生存时相互提供食物、促进增长。
    模型假设
  • 甲可以独自生存,数量变化服从Logistic规律; 甲乙一起生存时乙为甲提供食物、促进增长
  • 乙不能独自生存;甲乙一起生存时甲为乙提供食物、促进增长;乙的增长又受到本身的阻滞作用 (服从Logistic规律)。
    模型
    x ˙ 1 ( t ) = r 1 x 1 ( 1 − x 1 N 1 + σ 1 x 2 N 2 ) \dot{x}_{1}(t)=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}+\sigma_{1} \frac{x_{2}}{N_{2}} \right) x˙1(t)=r1x1(1N1x1+σ1N2x2)
    乙为甲提供食物是甲消耗的s1 倍
    x ˙ 2 ( t ) = r 2 x 2 ( − 1 + σ 2 x 1 N 1 − x 2 N 2 ) \dot{x}_{2}(t)=r_{2}x_{2}\left(- 1+\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right) x˙2(t)=r2x2(1+σ2N1x1N2x2)
    甲为乙提供食物是乙消耗的s2 倍
    ![[Pasted image 20240813020521.png]]

P2是甲乙相互依存而共生的平衡点

种群模型的几种形式

相互竞争
x ˙ 1 ( t ) = r 1 x 1 ( 1 − x 1 N 1 − σ 1 x 2 N 2 ) \dot{x}_{1}(t)=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right) x˙1(t)=r1x1(1N1x1σ1N2x2)
x ˙ 2 ( t ) = r 2 x 2 ( 1 − σ 2 x 1 N 1 − x 2 N 2 ) \dot{x}_{2}(t)=r_{2}x_{2}\left( 1-\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right) x˙2(t)=r2x2(1σ2N1x1N2x2)
相互依存
x ˙ 1 ( t ) = r 1 x 1 ( ± 1 − x 1 N 1 + σ 1 x 2 N 2 ) \dot{x}_{1}(t)=r_{1}x_{1}\left( \pm1- \frac{x_{1}}{N_{1}}+\sigma_{1} \frac{x_{2}}{N_{2}} \right) x˙1(t)=r1x1(±1N1x1+σ1N2x2)
x ˙ 2 ( t ) = r 2 x 2 ( ± 1 + σ 2 x 1 N 1 − x 2 N 2 ) \dot{x}_{2}(t)=r_{2}x_{2}\left( \pm1+\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right) x˙2(t)=r2x2(±1+σ2N1x1N2x2)
弱肉强食
x ˙ 1 ( t ) = r 1 x 1 ( 1 − x 1 N 1 − σ 1 x 2 N 2 ) \dot{x}_{1}(t)=r_{1}x_{1}\left( 1- \frac{x_{1}}{N_{1}}-\sigma_{1} \frac{x_{2}}{N_{2}} \right) x˙1(t)=r1x1(1N1x1σ1N2x2)
x ˙ 2 ( t ) = r 2 x 2 ( − 1 + σ 2 x 1 N 1 − x 2 N 2 ) \dot{x}_{2}(t)=r_{2}x_{2}\left( -1+\sigma_{2} \frac{x_{1}}{N_{1}}- \frac{x_{2}}{N_{2}} \right) x˙2(t)=r2x2(1+σ2N1x1N2x2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值