Hdu2588 GCD(欧拉函数)

GCD

  The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M. 

Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input

3
1 1
10 2
10000 72

Sample Output

1
6
260
题意:

给定N,M(2<=N<=1000000000, 1<=M<=N), 求1<=X<=N 且gcd(X,N)>=M的个数。

分析:

因为要求gcd(x,N)Mgcd(x,N)≥M

所以要让gcd尽量大,首先N是不能改变的而x小于N

那么必然有gcd(x,N)xgcd(x,N)≤x

所以我们只需要让gcd(x,N)=x使gcdgcd(x,N)=x就可以使得gcd最大

什么时候才有gcd(x,N)=xgcd(x,N)=x

很明显只有当x是N的因数的时候才行

现在我们已经有了一个大体的思路了,枚举N的因数,如果因数xMx≥M那么我们就至少得到了一个满足题意的解

但是我们想知道除了gcd(x,N)=xMgcd(x,N)=x≥M之外

是否还是其他小于等于N的数也k使得gcd(k,N)=xMgcd(k,N)=x≥M


我们仍然观察gcd(x,N)=xgcd(x,N)=x其实可以写成gcd(x,xNx)=xgcd(x,x⋅Nx)=x

而我们希望找到一个数k使得gcd(k,N)=xMgcd(k,N)=x≥M

gcd(xa,xNx)=xMgcd(x⋅a,x⋅Nx)=x≥M

到这里我们便发现了

如果想要保持xaxNxx⋅a和x⋅Nx这两个数的最大公因数仍然是x不变

必须保证aNxa和Nx是互质的,而题目要求k必须小于N,所以a就必须是小于NxNx并且与其互质的数,这样的数有几个边有多少种解

这时我们知道了其实就是求NxNx的欧拉函数即可,然后累加起来便是答案

注意m为1的时候,N以内的任何数都可以,因为最大公因数最小为1,故直接输出n

code:

#include <bits/stdc++.h>
using namespace std;
int Euler(int n){
    int res = n;
    for(int i = 2; i * i <= n; i++){
        if(n % i == 0){
            res = res / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if(n != 1){
        res = res / n * (n - 1);
    }
    return res;
}
void solve(int n,int m){
    int s = 0;
    if(m == 1) printf("%d\n",n);
    else{
        for(int i = 2; i * i <= n; i++){
            if(n % i == 0){
                if(i >= m) s += Euler(n/i);
                if(i * i != n && n / i >= m) s += Euler(i);//注意判断完全平方数不要多加
            }
        }
        printf("%d\n",s+1);
    }
}
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        int n,m;
        scanf("%d%d",&n,&m);
        solve(n,m);
    }
    return 0;
}
WPS Office 2019 是一款功能丰富的办公软件套装,它整合了文字、表格、演示、PDF 等组件,具备体积小巧、功能丰富、兼容性强等特点,能满足日常办公的多种需求。 功能组件丰富:包含 WPS 文字、WPS 演示、WPS 表格、WPS PDF 等组件,可用于文档编辑、表格计算、幻灯片制作、PDF 处理等,支持 DOC、DOCX、XLS、XLSX、PPT 等多种格式,能与 Microsoft Office 较好地兼容。 支持云存储与协作:用户登录 WPS 账号后,可实现多终端、跨平台的数据同步,还能与他人协同办公,文档可通过微信、QQ 等社交平台一键分享。 PDF 功能强大:提供沉浸式 PDF 阅读体验和稳定的编辑服务,支持一键编辑 PDF 文档内容。借助 OCR 技术,可精准转换文档、表格、PPT、图片等格式的文件。 界面设计优化:具有全新视觉设计,默认皮肤舒适清爽,还支持桌面背景、界面字体、皮肤、格式图标等个性化设置。同时,文档标签可拖拽成独立窗口或合并,用户可自主选择文档显示方式,还能将文件放置在不同工作区,便于分类浏览与管理。 内置实用工具:内置了简单的网页浏览器,点击文档中的链接会默认用其打开,可进行网页添加到首页、另存为 PDF 等操作。此外,“应用中心” 集成了输出转换、文档助手、安全备份等多种实用功能。 模板资源丰富:稻壳商城提供了大量模板、范文、图片等素材资源,涵盖求职简历、总结计划、合同协议等常见文档类型,方便用户快速创建专业文档。 表格功能特色突出:支持通过关键词快速切换工作表,设有阅读模式和护眼模式。还可分类合并单元格,以及拆分合并单元格并填充内容。公式编辑器中可轻松完成公式嵌套,筛选时可通过 “仅筛选此项” 一步完成特定值筛选,还能根据筛选条件生成动态分析图表。另外,“特色功能” 和 “智能工具箱” 菜单中包含 PDF
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值