题目描述:
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
思路1:
因为是排序数组,所以想到用二分法,对每一行进行二分查找即可,时间复杂度是O(log n)。
class Solution(object):
def findNumberIn2DArray(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
if not matrix:
return False
# 对每一行进行二分查找,同时利用行和列的关系进行优化
m, n = len(matrix), len(matrix[0])
for i in range(m):
# 二分查找
l, r = 0, n-1
while l <= r:
mid = l + (r - l) // 2
if matrix[i][mid] == target:
return True
if matrix[i][mid] < target:
l = mid + 1
if matrix[i][mid] > target:
r = mid - 1
return False
思路2: 注意到不仅每一行是排好序,每一列也是排好序的,在题解中发现了一种进一步优化时间复杂度的方法。
优秀题解链接
class Solution:
def findNumberIn2DArray(self, matrix: List[List[int]], target: int) -> bool:
i, j = len(matrix) - 1, 0
while i >= 0 and j < len(matrix[0]):
if matrix[i][j] > target: i -= 1
elif matrix[i][j] < target: j += 1
else: return True
return False