百练 1321: 棋盘问题
总时间限制:1000ms 内存限制: 65536kB
原题OJ链接
描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
样例输入
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
样例输出
2
1
解题思路
我们在这里采用分治的思想,把问题一步一步拆分成子问题。
要解决k个棋子的问题,也就是要解决k-1个棋子的子问题再乘以第k个棋子的方法数;要解决k-1个棋子的问题,也就是要解决k-2个棋子的子问题…………如此递归下去,直至要解决0个棋子的问题的时候,就是到终点要return的时候了。
dfs的经典三层结构:
dfs()
{
if条件判断——(到终点)
{
操作……
return;
}
if……省略一些条件判断(剪枝优化,比如一些没必要的continue或者计算过的子问题的标记备忘录直接存取)
for()
if……满足条件的筛选
修改标记;
dfs();
改回标记;
}
(注:有些情况下是不需要dfs三层结构第三层:改回标记 这一操作的,见bnuoj12921或bnuoj1681, 这种情况多是因为:需要遍历全部满足题意的点,是纯粹的深度优先搜索遍历全部可走点)
首先,return的条件是什么?肯定是到终点了,所以肯定需要进行一些操作,比如某个count++,然后return
if条件判断,剪枝优化,毕竟dfs……毕竟递归……能优化尽量优化……
接下来是dfs递归的核心部分:
我们不妨从第0行开始,这时候需要处理的是k个棋子,对第0行遍历,找到一个满足题意的‘#’区域后,我们知道以后这一列都不能用了,我们vis数组可以只建立为一维数组,只存储用过的行就可以,然后深层搜索,即dfs,这时候,我们就要从第1行开始搜索了(正因为这样,vis才不用存储行是否用过的冲突问题),此时需要处理的是k-1个棋子,我们同样是对第1行所有元素都遍历,找‘#’,只不过对于之前vis标记过得那一列,我们也不选用,找到后,再次标记,然后dfs……………………dfs进入第i行,对第i行遍历,当前需要处理的是k-i个棋子的问题,筛掉非棋盘区域和之前标记过得列,找到’#’,标记,然后dfs()………………知道某一次dfs进入后,发现当前处理棋子数量为0,说明到头了,这是找到了一种方法 ,count++,return,假设这是第一次return,那么将返回到第k-1行,继续寻找满足的‘#’,重复…………知道某一次return会到第0行了,那么,将从第1行继续作为dfs的第一次起始,这就相当于改变控制了dfs起始的位置。
以上引用自这位大神的博客 http://blog.csdn.net/lvxin1204/article/details/51028041
源代码
#include<iostream>
#include<cstring>
using namespace std;
char chess[8][8];
int vis[8];
int count;
int n,k;
void dfs(int a, int b){
// 从第a行开始,需要处理k个棋子
if(b==0){
count++;
return;
}
for(int i=a;i<n;i++){
for(int j=0;j<n;j++){
if(chess[i][j]=='#' && vis[j]==0){
//假如chess[i][j]处是棋盘且该列未被访问过
vis[j]=1;
dfs(i+1,b-1);
vis[j]=0;
}
}
}
}
int main(){
while(cin>>n>>k && n!=-1 && k!=-1){
memset(vis,0,sizeof(vis));
count=0;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cin>>chess[i][j];
}
}
dfs(0,k);
cout<<count<<endl;
}
return 0;
}