九度 题目1207:质因数的个数
原题OJ链接:http://ac.jobdu.com/problem.php?pid=1207
题目描述:
求正整数N(N>1)的质因数的个数。
相同的质因数需要重复计算。如120=2*2*2*3*5,共有5个质因数。
输入:
可能有多组测试数据,每组测试数据的输入是一个正整数N,(1< N< 10^9)。
输出:
对于每组数据,输出N的质因数的个数。
样例输入:
120
样例输出:
5
提示:
注意:1不是N的质因数;若N为质数,N是N的质因数。
解题思路:
素数筛法只需筛到100000即可,而不是与输入数据同规模的1000000000(编译报错或者运行时错误)。这样处理的理论依据是:n至多只存在一个大于sqrt(n)的素因数(否则两个大于sqrt(n)的数相乘即大于n)。这样只需将n所有小于sqrt(n)的素数从n中除去,剩余的部分必为该大素因数。正是由于这样的原因,我们不必依次测试sqrt(n)到n的素数,而是在处理完小于sqrt(n)的素因数时,就能确定是否存在该大素因数,若存在其幂指数也必为1。
引自《王道机试指南》
源代码:
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
#define MAX_N 100000
bool mark[MAX_N+1];
int prime[MAX_N+1];
int primeSize;
void init(){//素数筛法
primeSize=0;
memset(mark,0,sizeof(mark));
for(int i=2;i<=MAX_N;i++){
if(mark[i]==true) continue;
else {
prime[primeSize++]=i;
}
for(int j=2*i;j<=MAX_N;j=j+i){
mark[j]=true;
}
}
}
int main(){
init();
int N;
while(cin>>N){
int count=0;//记录素因数的个数
int i=0;
int tmp=N;
while(N!=1 && i<primeSize){
int x=N%prime[i];
if(x==0){
N=N/prime[i];
count++;
}
else{
i++;
}
}
if(N!=1){
/*
若测试完2到100000内的所有素因数,N仍未被分解至1,
则剩余的因数一定是一个大于100000的素因数
*/
count++;
}
cout<<count<<endl;
}
return 0;
}