62-不同路径(矩阵路径)

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下
    示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6

题解一(动态规划)

class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp=new int[m][n];
        for(int i=0;i<m;i++){
            dp[i][0]=1;
        }
        for(int j=0;j<n;j++){
            dp[0][j]=1;
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}

笔记:

  1. dp中,第一行和第一列都为1的原因是走到第一行和第一列的路径数均为1。
  2. 使用动态规划数组记录数据。

题解二(数学组合的方式)

class Solution {
    public int uniquePaths(int m, int n) {
        int N=m+n-2;//总步数
        int M=m-1;//向下走的步数
        long ret=1;
        for(int i=1;i<=M;i++){
            ret=ret*(N-M+i)/i;
        }
        return (int)ret;
    }
}

笔记:

  1. 机器人一定会走m+n-2步,即从m+n-2中挑出m-1步向下走,即C((m+n-2),(m-1))。(m+n-2在下面)
  2. 排列组合c的公式:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。(n为下标,m为上标)。
  3. 分母为m!,分子为n乘并减,直到减到n-m+1为止。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页