图的m着色问题

时间限制:1秒        内存限制:128M

题目描述

给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。图的m着色问题是对于给定图G和m 种颜色,找出所有不同的着色法。 

编程任务: 对于给定的无向连通图G和m种不同的颜色,编程计算图的所有不同的着色法。

输入描述

第1行有3个正整数n,k 和m,表示给定的图G有n个顶点和k条边,m种颜色。顶点编号为1,2,…,n。 

接下来的k行中,每行有2个正整数u,v,表示图G 的一条边(u,v)。

数据范围:1<n≤100,1<k≤2500,1<m≤6

输出描述

将计算出的不同的着色方案数输出。

样例

输入

5 8 4 
1 2 
1 3 
1 4 
2 3 
2 4 
2 5 
3 4 
4 5

输出

48
#include<cmath>
#include<cstdio>
#include<queue>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std; 
int cnt,c[110],g[110][110];
int n,k,m;
int cheak(int x){
	for(int i=1;i<=x-1;i++){
		if(g[x][i]==1&&c[x]==c[i]){
			return false;
		}
	}
	return true;
}
void dfs(int x){
	if(x>n){
		cnt++;
		return ;
	} 
	for(int i=1;i<=m;i++){
		c[x]=i;
		if(cheak(x)==true){
			dfs(x+1);
		}
		c[x]=0;
	}
}
int main(){
	int x,y;
	cin>>n>>k>>m;
	for(int i=1;i<=k;i++){
		cin>>x>>y;
		g[x][y]=1;
		g[y][x]=1;
	}
	dfs(1);
	cout<<cnt;

    return 0;
    } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值