时间限制:1秒 内存限制:128M
题目描述
给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。图的m着色问题是对于给定图G和m 种颜色,找出所有不同的着色法。
编程任务: 对于给定的无向连通图G和m种不同的颜色,编程计算图的所有不同的着色法。
输入描述
第1行有3个正整数n,k 和m,表示给定的图G有n个顶点和k条边,m种颜色。顶点编号为1,2,…,n。
接下来的k行中,每行有2个正整数u,v,表示图G 的一条边(u,v)。
数据范围:1<n≤100,1<k≤2500,1<m≤6
输出描述
将计算出的不同的着色方案数输出。
样例
输入
5 8 4 1 2 1 3 1 4 2 3 2 4 2 5 3 4 4 5
输出
48
#include<cmath>
#include<cstdio>
#include<queue>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
int cnt,c[110],g[110][110];
int n,k,m;
int cheak(int x){
for(int i=1;i<=x-1;i++){
if(g[x][i]==1&&c[x]==c[i]){
return false;
}
}
return true;
}
void dfs(int x){
if(x>n){
cnt++;
return ;
}
for(int i=1;i<=m;i++){
c[x]=i;
if(cheak(x)==true){
dfs(x+1);
}
c[x]=0;
}
}
int main(){
int x,y;
cin>>n>>k>>m;
for(int i=1;i<=k;i++){
cin>>x>>y;
g[x][y]=1;
g[y][x]=1;
}
dfs(1);
cout<<cnt;
return 0;
}