(Java实现) 图的m着色问题

该博客介绍了如何使用Java解决图的m着色问题。给定无向连通图和m种颜色,目标是找出所有使每条边的两个顶点颜色不同的着色方法。博客提供了输入输出格式,样例及解题思路,强调了利用类似于之前问题的计数方法来解决此问题。
摘要由CSDN通过智能技术生成

图的m着色问题
【问题描述】
给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
【编程任务】
对于给定的无向连通图G和m种不同的颜色,编程计算图的所有不同的着色法。
【输入格式】
第1行有3个正整数n,k 和m,表示给定的图G有n个顶点和k条边,m种颜色。顶点编号为1,2,…,n。接下来的k行中,每行有2个正整数u,v,表示图G 的一条边(u,v)。
【输出格式】
程序运行结束时,将计算出的不同的着色方案数输出。
【输入样例】
5 8 4
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
【输出样例】
48

【解题思路】
其实这道题刚开始依然没思路(搜索刚开始做得太不熟练,,,。。。求原谅),fye大爷再次典型梦中人!!!!
经大爷点拨之后这道题就非常清晰了。。。其实我们可以用到类似前面部落卫队的思路:仇敌关系和颜色关系其实可以用同一种表示方法;
f[i][j]表示与i相连的点有几个是颜色j;
因为同色的不能连在一起,所以f[i][j]为0时可取,非0时不可取;
因为周围有可能有很多个相同颜色的点,所以f数组必须是一个计数器(int),而不能是bool;

以下是Java实现的m着色问题的代码和解释: ```java import java.util.*; public class GraphColoring { private int[][] graph; // 存储的邻接矩阵 private int[] colors; // 存储每个顶点的颜色 private int m; // 颜色数 private int n; // 顶点数 private int count; // 不同的着色方案数 public GraphColoring(int[][] graph, int m { this.graph = graph; this.m = m; this.n = graph.length; this.colors = new int[n]; this.count = 0; } public int countColorings() { backtrack(0); return count; } private void backtrack(int v) { if (v == n) { // 所有顶点都已着色 count++; return; } for (int i = 1; i <= m; i++) { // 枚举所有颜色 if (isValid(v, i)) { // 判断当前颜色是否可用 colors[v] = i; // 着色 backtrack(v + 1); // 继续着色下一个顶点 colors[v] = 0; // 回溯 } } } private boolean isValid(int v, int c) { for (int i = 0; i < n; i++) { if (graph[v][i] == 1 && c == colors[i]) { // 如果相邻顶点颜色相同,则不可用 return false; } } return true; } } ``` 解释: 1. 首先定义一个GraphColoring类,它包含一个邻接矩阵graph、一个颜色数组colors、颜色数m、顶点数n和不同的着色方案数count。 2. 在构造函数中初始化这些变量。 3. countColorings()方法是求不同的着色方案数的主要方法。它调用backtrack(0)方法开始回溯搜索。 4. backtrack(v)方法是回溯搜索的核心方法。它从顶点v开始着色,枚举所有颜色,判断当前颜色是否可用,如果可用则着色,继续着色下一个顶点,否则回溯。 5. isValid(v, c)方法用于判断当前颜色是否可用。它遍历所有与顶点v相邻的顶点,如果相邻顶点颜色相同,则不可用。 相关问题
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值