最长上升子序列2

最长上升子序列2

时间限制:1秒        内存限制:64M

题目描述

给定一个长度为 N 的数列,求数值严格单调递增的子序列的长度最长是多少。

输入描述

第一行包含整数 N。

第二行包含 N 个整数,表示完整序列。

输出描述

输出一个整数,表示最大长度。

样例

输入

7
3 1 2 1 8 5 6

输出

4

提示

N<=1e5

−10^9≤数列中的数≤10^9

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+2;
long long a[N],sum[N],ans; 
int main() {
	int n;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	ans=1;
	sum[ans]=a[1];
	for(int i=2;i<=n;i++){
		if(a[i]>sum[ans]){
			ans++;
			sum[ans]=a[i];
		}
		else{
			int x=lower_bound(sum+1,sum+ans+1,a[i])-sum;
			sum[x]=a[i];
		}
	} 
	cout<<ans<<endl;
	return 0;
	}

解题步骤:

  1. 首先,我们需要读取输入的序列长度和序列本身。
  2. 然后,我们可以使用动态规划的方法来求解最长单调递增子序列的长度。我们可以定义一个数组dp,其中dp[i]表示以第i个元素结尾的最长单调递增子序列的长度。状态转移方程为:dp[i] = max(dp[j]) + 1,其中0 <= j < i且nums[j] < nums[i]。
  3. 最后,我们输出dp数组中的最大值,即为最长单调递增子序列的长度。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值