今天再次遇到了这个问题,记得当初考研上机考试时也做了这道题,现在想想当时用的方法,真的是挺low的,今天看到了一个好的解决方法,记录一下这个奇妙的方法!
public class JosephRing {
//约瑟夫环问题
//一种方法是模拟一个环状数据结构,每次删除第m个元素,这样的方法每次删除需要m步,一共需要删除n - 1个数字,所以时间复杂度是O(mn),并且空间复杂度是O(n)
//下面是一种很牛的方法(时间复杂度是O(n),空间复杂度是O(1)) 每次从0,1,2....n - 1中删除第m个数
/**
* f(n,m)代表每次在n个数字0,1,2,3...n - 1中每次删除第m个数字之后最后剩下的数字(只是一个数字)
* 0 n == 1
* f(n,m) = {
* (f(n - 1,m) + m) % n n > 1
*
* n代表n个数字,m代表每次删除第m个元素
* 也可以当下标来使用
*/
public int joseRing(int n,int m){
if(n < 1 || m < 1){
return -1;
}
int last = 0;
for(int i = 2;i <= n;i ++){
last = (last + m) % n;
}
return last;
}
public static void main(String[] mh){
JosephRing jr = new JosephRing();
System.out.println(jr.joseRing(100, 6));
}
}