[树形DP] Codeforces 856D. Masha and Cactus

8 篇文章 0 订阅

fi 表示子树 i 中加边的方案,gi=jsonifj

若当前考虑的点为 u ,第一种方案是不加边,那么 fu=gu

如果要加边,那么加的边的两个端点的lca肯定是 u

如果加一条 x,y 的边,那么造成的贡献是 ipath(x,y)jsonijpath(x,y)fj

考虑一个点的权值 wi=gifi 用dfs加树状数组就可以维护出这个点到根路径的权值和。

O(nlogn)

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <set>
#include <queue>
#include <assert.h>
#include <cstring>
#include <tuple>
#define fi first
#define se second

using namespace std;

typedef long long ll;
typedef pair<int,int> par;

inline char nc(){
    static char buf[100000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}

template<class T> inline void rea(T &x){
    char c=nc(); x=0;
    for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}

inline int rea(char *x,int L='a',int R='z'){
    char c=nc(); int len=0;
    for(;c>R||c<L;c=nc());for(;c>=L&&c<=R;x[++len]=c,c=nc()); return len;
}

const int N=200010,P=1e9+7;

int n,m,it,L[N],R[N],dpt[N];
vector<int> s[N];
struct iedge{
    int x,y,w;
    iedge(int _x=0,int _y=0,int _w=0):x(_x),y(_y),w(_w){}
};
vector<iedge> e[N];
int fa[N][20];

void dfs(int u){
    L[u]=++it; dpt[u]=dpt[fa[u][0]]+1;
    for(int i=1;i<=18;i++) fa[u][i]=fa[fa[u][i-1]][i-1];
    for(int v : s[u]) dfs(v);
    R[u]=it;
}

inline int lca(int x,int y){
    if(dpt[x]<dpt[y]) swap(x,y);
    for(int i=18;~i;i--)
        if(dpt[fa[x][i]]>=dpt[y]) x=fa[x][i];
    if(x==y) return x;
    for(int i=18;~i;i--)
        if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}

int f[N],b[N];

inline void Add(int x,int y){
    for(;x<=n;x+=x&-x) b[x]+=y;
}

inline int Query(int x){
    int ret=0;
    for(;x;x-=x&-x) ret+=b[x];
    return ret;
}

void dp(int u){
    for(int v : s[u]) dp(v);
    int ss=0;
    for(int v : s[u]) ss+=f[v];
    f[u]=ss;
    for(auto ed : e[u]){
        int cur=Query(L[ed.x])+Query(L[ed.y])+ed.w+ss;
        f[u]=max(cur,f[u]);
    }
    Add(L[u],ss-f[u]); Add(R[u]+1,f[u]-ss);
}

int main(){
    rea(n); rea(m);
    for(int i=2,x;i<=n;i++)
        rea(x),s[x].push_back(i),fa[i][0]=x;
    dfs(1);
    for(int i=1,x,y,w;i<=m;i++)
        rea(x),rea(y),rea(w),e[lca(x,y)].push_back({x,y,w});
    dp(1);
    printf("%d\n",f[1]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值