Adversarial Machine Learning
文章平均质量分 93
小天狼星不来客
这个作者很懒,什么都没留下…
展开
-
Poisoning Attack in Adversarial Machine Learning
Poisoning Attack in Adversarial Machine LearningData Poisoning攻击区别于Evasion攻击,是攻击者通过对模型的训练数据做手脚来达到控制模型输出的目的,是一种在训练过程中产生的对模型安全性的威胁。Data Poisoning,即对训练数据“下毒”或“污染”。这种攻击手段常见于外包模型训练工作的场景,例如我们常常将模型训练任务委托给第三方云平台(如Google Colab等等),此时第三方平台就掌握了我们的所有训练数据,很容易在训练数据上做手脚,原创 2021-03-05 14:20:40 · 1935 阅读 · 1 评论 -
Evasion Attack in Adversarial Machine Learning
Evasion Attack in Adversarial Machine LearningEvasion Attack旨在不干涉模型任何训练的基础上,设计出让训练好的模型无识别的test case,我们称之为inference-phase adversarial attack,又称为adversarial examples。从分类的角度上,evasion attack可以分为两大类,一类是ℓp\ell_pℓp attack,另一类是Non-ℓp\ell_pℓp attack。区别在于,前者在一张正原创 2021-03-05 14:17:01 · 851 阅读 · 0 评论