U-net(2)

1.U-net:详细介绍:https://blog.csdn.net/u012931582/article/details/70215756

                              https://blog.csdn.net/natsuka/article/details/78565229(用于细胞分割,有损失函数)

2.关于keras初步了解。手写数字识别:https://www.cnblogs.com/yqtm/p/6924939.html


3.损失函数:是真实的,是预测的,已经实现的代码用这个函数。

4:数据的归一化和标准化:详细请见:https://blog.csdn.net/everlasting_188/article/details/53494737

4.1 归一化:归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快。

由于采集的各数据单位不一致,因而须对数据进行[-11]归一化处理,归一化方法主要有如下几种,供大家参考:(by james
1、线性函数转换,表达式如下:
y=(x-MinValue)/(MaxValue-MinValue)
说明:xy分别为转换前、后的值,MaxValueMinValue分别为样本的最大值和最小值。
2、对数函数转换,表达式如下:
y=log10(x)
说明:以10为底的对数函数转换。
3、反余切函数转换,表达式如下:
y=atan(x)*2/PI

归一化是为了加快训练网络的收敛性,可以不进行归一化处理

4.2 标准化

数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。由于信用指标体系的各个指标度量单位是不同的,为了能够将指标参与评价计算,需要对指标进行规范化处理,通过函数变换将其数值映射到某个数值区间。

1.最小-最大规范化(线性变换)

y=( (x-MinValue) / (MaxValue-MinValue) )(new_MaxValue-new_MinValue)+new_minValue

2.z-score规范化(或零-均值规范化)

y=(x-X的平均值)/X的标准差#已经运行出来的实验用了这个方法:

优点:当X的最大值和最小值未知,或孤立点左右了最大-最小规范化时, 该方法有用

3.小数定标规范化:通过移动X的小数位置来进行规范化

y= x/10的j次方 (其中,j使得Max(|y|) <1的最小整数

4.对数Logistic模式:

新数据=1/(1+e^(-原数据))

5.模糊量化模式:

新数据=1/2+1/2sin[派3.1415/(极大值-极小值)*

(X-(极大值-极小值)/2) ] X为原数据


阅读更多
文章标签: keras u-net
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

U-net(2)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭