题目大意:给定n,a,b,p,其中n,a互质。定义一个长度为n的01串c[0..n-1],其中c[i]==0当且仅当(ai+b) mod n < p。
给定一个长为m的小01串,求出小串在大串中出现了几次。
首先很容易想到,当确定小串的第一位在大串当中的位置时,小串中所有数的值就都确定了
先不考虑0和1
不妨设x为小串第一个数实际的值
则我们可以知道小串第i个数实际的值为(x+(i-1)a)%p
所以我们可以根据小串实际的值是0还是1,列出化简后形如x1≤x%p≤x2的m个不等式
然后怎么解呢?
我们可以把不等式转化为x不能取的值的一些区间
然后把这些区间放在一起取个并,最后没被覆盖的就是可以取的了!
然后我们就可以知道小串首位都可以是哪些值了
把这个再刨去大串中最后那m-1个不能作为小串开头的数,就是最后的答案了
(至于上面这一步,也可以把他们当成m-1个区间扔进去一起算区间并)
#include<iostream>
#include<cstdio>
#include<algorithm>
#define N 3000010
using namespace std;
long long n,m,p,a,b,cnt;
char c[N];
struct ppp {long long s,e;}l[2*N];
bool cmp(ppp x,ppp y) {return x.s<y.s;}
int main()
{
scanf("%lld%lld%lld%lld%lld",&n,&a,&b,&p,&m);
long long i,j,k,x,y;
scanf("%s",c+1);
for(i=1;i<=m;i++)
{
if(c[i]=='0')
{
x=((p-(i-1)*a)%n+n)%n;
y=((n-1-(i-1)*a)%n+n)%n;
}
else
{
x=((0-(i-1)*a)%n+n)%n;
y=((p-1-(i-1)*a)%n+n)%n;
}
if(x>y)
{
cnt++;l[cnt].s=x;l[cnt].e=n-1;
cnt++;l[cnt].s=0;l[cnt].e=y;
}
else
{
cnt++;l[cnt].s=x;l[cnt].e=y;
}
}
for(i=n-m+1;i<n;i++)
{
cnt++;
l[cnt].s=(a*i+b)%n;
l[cnt].e=(a*i+b)%n;
}
sort(l+1,l+cnt+1,cmp);
long long maxn=-1;
long long ans=0;
for(i=1;i<=cnt;i++)
{
if(l[i].s>maxn)
ans+=l[i].s-maxn-1;
maxn=max(l[i].e,maxn);
}
printf("%lld",ans+(n-1-maxn));
}
时间复杂度是算区间并的复杂度O(MlogM)