BZOJ2797: [Poi2012]Squarks

111 篇文章 0 订阅
17 篇文章 0 订阅
题目大意:给n个数的所有和,求这n个数的所有可能方案

首先最小的是x1+x2,第二小的是x1+x3,接着O(N)枚举x2+x3,就能算出x1,x2,x3,然后从所有的和中删掉这3个和,剩下的最小的一定是x1+x4,这样就求出了x4,然后再删掉这三个新的和,又能求出x1+x5....以此类推

没有spj,但是貌似1A了...

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set> 
#define N 100010
using namespace std; 
multiset<int>S;
int X[N];
int ans[310][310],cnt;
int n;
bool solveit()
{
	int i=4,j;
	while(i<=n)
	{
		X[i]=*(S.begin())-X[1];
		if(X[i]<X[i-1]) continue;
		for(j=1;j<i;j++)
		{
			if(S.find(X[i]+X[j])==S.end()) return false;
			S.erase(S.find(X[i]+X[j]));
		}
		i++;
	}
	return true;
}
int a[N];
int main()
{
	scanf("%d",&n);
	int i,j,x,y,tot=n*(n-1)/2;
	for(i=1;i<=tot;i++)
	scanf("%d",&a[i]);
	int x12,x13,x23;
	sort(a+1,a+tot+1);
	for(i=3;i<=n+1;i++)
	if(a[i]!=a[i-1])
	{
		x12=a[1];x13=a[2];
		x23=a[i];
		if((x12+x13+x23)%2==1) continue;
		X[1]=(x12+x13+x23)/2-x23;
		X[2]=(x12+x13+x23)/2-x13;
		X[3]=(x12+x13+x23)/2-x12;
		if(!(X[1]<=X[2]&&X[2]<=X[3])) continue;
		S.clear();
		for(j=3;j<=tot;j++)
		if(i!=j)
		S.insert(a[j]);
		if(solveit())
		{
			cnt++;
			for(j=1;j<=n;j++)
			ans[cnt][j]=X[j];
		}
	}
	printf("%d\n",cnt);
	for(i=1;i<=cnt;i++)
	{
		for(j=1;j<=n;j++)
		printf("%d ",ans[i][j]);
		puts("");
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值