HDOJ4512 最长公共上升子序列

吉哥系列故事——完美队形I

Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 3404 Accepted Submission(s): 1154

Problem Description
  吉哥这几天对队形比较感兴趣。
  有一天,有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] … h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则称之为完美队形:
  
  1、挑出的人保持他们在原队形的相对顺序不变;
  2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然,如果m是奇数,中间那个人可以任意;
  3、从左到中间那个人,身高需保证递增,如果用H表示新队形的高度,则H[1] < H[2] < H[3] …. < H[mid]。

  现在吉哥想知道:最多能选出多少人组成完美队形?

Input
  第一行输入T,表示总共有T组数据(T <= 20);
  每组数据先输入原先队形的人数n(1<=n <= 200),接下来一行输入n个整数,表示按顺序从左到右原先队形位置站的人的身高(50 <= h <= 250,不排除特别矮小和高大的)。

Output
  请输出能组成完美队形的最多人数,每组数据输出占一行。

Sample Input
2
3
51 52 51
4
51 52 52 51

Sample Output
3
4

Source
2013腾讯编程马拉松初赛第二场(3月22日)

Recommend
liuyiding | We have carefully selected several similar problems for you: 6193 6192 6191 6190 6189

一开始以为是连续的,用了求最大回文串的manacher算法。。。。
emmmm,以后要好好读题了。。

把原来的序列倒序然后求最长公共上升子序列就OK了

#include <iostream>
#include <ctime>
#include <cmath>
#include <cstring>
using namespace std;

const int maxn = 205;
int T,i,j,k,n;
int a[maxn],b[maxn],dp[maxn];

void init(){
    cin >> n;
    memset(dp,0,sizeof(dp));
    for (i=1; i<=n; i++) cin >> a[i];
    k = n;
    for (i=1; i<=n; i++) b[k--] = a[i];
}

int work(){
     int i,j;
     for (i=1; i<=n; i++) {
         int id = 0;
         for (j=1; j<n-i+1; j++) {
             if (b[j]<a[i] && dp[j]+1>dp[id]) id = j;
             if (b[j]==a[i]) dp[j] = max(dp[id]+2,dp[j]);
             dp[n-i+1] = max(dp[id]+1,dp[n-i+1]);
         }
     }

     int ans = 0;
     for (i=0; i<maxn; i++) ans = max(ans,dp[i]);
     return ans;
}

int main(){
    std::ios::sync_with_stdio(false);
    cin >> T;
    while (T--) {
        init();
        cout << work() << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值