分析:
一个长度为n的串,问子串是1~n循环串的最长长度。利用KMP算法可以求出最小循环节的长度跟循环次数。
如果一个长度为len的字符串,如果 len%(len-next[len])==0&&next[len]!=0就说明字符串循环 。
循环节长度为len-next[len] 循环次数为len/(len-next[len])。
本题循环串不一定出现在串首,因此要枚举这个串的所有字串,先枚举起点,再枚举长度。 n的规模1000,可以接受n^2的算法。
对于一个循环串就沿着next数组更新,因为循环节肯定是沿着next数组的位置跳跃的。
代码如下:
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int maxn = 1005;
char s[maxn];
int Next[maxn],ans[maxn];
int T;
int len;
void make_next(char *s, int *Next){
Next[0] = Next[1] = 0;
int j=0;
len = strlen(s);
for (int i=1; i<len; i++) {
while (j && s[j]!=s[i]) j = Next[j];
if (s[j]==s[i]) j++;
Next[i+1] = j;
}
}
inline int MAX(int x, int y) {return x>y?x:y;}
void solve(){
int N = strlen(s);
memset(ans,0,sizeof(ans));
for (int i=0; i<N; i++) {
make_next(s+i,Next);
for (int j=1; j<=N-i; j++) {
int k = j;
while (k) {
if (j%(j-Next[k])==0) ans[j/(j-Next[k])] = MAX(ans[j/(j-Next[k])],j);
k = Next[k];
}
}
}
}
int kase = 0;
void Print(){
printf("Case #%d:",++kase);
for (int i=1; i<=strlen(s); i++) printf(" %d",ans[i]);
printf("\n");
}
int main(){
scanf("%d",&T);
while (T--){
scanf("%s",s);
solve();
Print();
}
return 0;
}