UVA12012 KMP简单应用


分析:

一个长度为n的串,问子串是1~n循环串的最长长度。利用KMP算法可以求出最小循环节的长度跟循环次数。

如果一个长度为len的字符串,如果 len%(len-next[len])==0&&next[len]!=0就说明字符串循环 。

循环节长度为len-next[len]  循环次数为len/(len-next[len])。

本题循环串不一定出现在串首,因此要枚举这个串的所有字串,先枚举起点,再枚举长度。 n的规模1000,可以接受n^2的算法。

对于一个循环串就沿着next数组更新,因为循环节肯定是沿着next数组的位置跳跃的。


代码如下:

#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;

const int maxn = 1005;
char s[maxn];
int Next[maxn],ans[maxn];
int T;
int len;

void make_next(char *s, int *Next){
   Next[0] = Next[1] = 0;
   int j=0;
   len = strlen(s);
   for (int i=1; i<len; i++) {
      while (j && s[j]!=s[i]) j = Next[j];
      if (s[j]==s[i]) j++;
      Next[i+1] = j;
   }
}

inline int MAX(int x, int y) {return x>y?x:y;}
void solve(){
    int N = strlen(s);
    memset(ans,0,sizeof(ans));
    for (int i=0; i<N; i++) {
        make_next(s+i,Next);
        for (int j=1; j<=N-i; j++) {
            int k = j;
            while (k) {
                 if (j%(j-Next[k])==0) ans[j/(j-Next[k])] = MAX(ans[j/(j-Next[k])],j);
                 k = Next[k];
            }
        }
    }
}

int kase = 0;
void Print(){
   printf("Case #%d:",++kase);
   for (int i=1; i<=strlen(s); i++) printf(" %d",ans[i]);
   printf("\n");
}

int main(){
    scanf("%d",&T);
    while (T--){
        scanf("%s",s);
        solve();
        Print();
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值