数据处理:科学数据包pandas基本介绍

本文介绍了Python数据分析库pandas的基本概念和常用操作,包括数据结构、索引与选择、排序、统计分析、数据合并、数据透视以及时间序列处理等。pandas基于numpy并结合matplotlib提供数据可视化,其高效的操作接口如.loc()和.iloc()加速了数据处理过程。
摘要由CSDN通过智能技术生成

第一部分:pandas包

一.pandas基本介绍

pandas:python里分析结构化数据的工具集。
基础是numpy:提供高性能矩阵运算
图形库matplotlib:提供数据可视化

二.pandas基本操作

1.一维、二维数组的创建和基本操作:

import numpy as np
import pandas as pd
s = pd.Series([1,2,3,4,np.NaN]) #pandas中的一维数据Series
dates = pd.date_range('20200301',periods=6)
# pandas中的二维数组DataFrame,行索引index,列索引columns

#创建DataFrame方法一:
data = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('abcd'))
data
Out[12]: 
                   a         b         c         d
2020-03-01  0.974217  1.415198  0.449173  0.309444
2020-03-02 -0.783394  1.642082  1.929648 -1.730744
2020-03-03 -1.412779  2.459838  0.793193  1.093348
2020-03-04 -2.860147 -1.633533  1.972606 -1.106984
2020-03-05  1.312970 -0.240283 -0.411076 -0.175680
2020-03-06 -0.277543 -0.525772  0.556319  0.938473

#创建DataFrame方法二:
d = {
   'A'</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值