自然數等冪和幻方定理
※※※※※※
定理:一個自然數構造的2^n階幻方, 上部分與下部分能夠構成等冪和k=1,2,3……(2n-1), 就稱呼這個幻方叫「自然數等冪和幻方」。構造這樣性質的幻方, 只有唯一的一組解。
※※※※※※
這一組解的詳細解釋:兩部分組成,分別是奇元素碼數字群、 偶元素碼數字群,分別作為幻方的上部分、下部分。 奇元素碼數字群、偶元素碼數字群,是自然數按照「 自然數的新奇偶法」得出。
「自然數的新奇偶法」 http://blog.itpub.net/20489909/viewspace-1779422/
※※※※※※
◆幻方的階數遞增,等冪和的次數遞增,符合資格的解◆
4階幻方:上部分與下部分構成等冪和k=1,2,3,只有唯一的一組解。
8階幻方:上部分與下部分構成等冪和k=1,2,3,4,5,只有唯一的一組解。
16階幻方:上部分與下部分構成等冪和k=1,2,3,4,5, 6,7,只有唯一的一組解。
2^5階幻方:上部分與下部分構成等冪和k=1,2,3,4,5, 6,7,8,9,只有唯一的一組解。
……
2^n階幻方:上部分與下部分,等冪和k=1,2,3……( 2n-1),只有唯一的一組解。
※※※※※※
◆示範如何大量製作只有一組解,上部分與下部分k=1,2, 3的「4階自然數等冪和幻方」◆
首先使用自然數新奇偶法,從自然數1~16分拆出兩個數字群: 奇元素碼數字群、偶元素碼數字群。
奇元素碼數字群:2,3,5,8,9,12,14,15。
偶元素碼數字群:1,4,6,7,10,11,13,16。
奇元素碼數字群作上部分,偶元素碼數字群作下部分, 製造出一個元素碼上下歸邊的「自然數等冪和4階幻方」。
「自然數等冪和4階幻方」
02 15 12 05
14 03 08 09
07 10 13 04
11 06 01 16
幻和=34。
然後,逆向操作自然數的密碼:D=1,A=1,K=2,V=4, T=8。得出元素碼4階解碼器。
「元素碼4階解碼器」
[D+A ] [D+K+V+T ] [D+A+K+T ] [D+V ]
[D+A+V+T ] [D+K ] [D+A+K+V ] [D+T ]
[D+K+V ] [D+A+T ] [D+V+T ] [D+A+K ]
[D+K+T ] [D+A+V ] [D ] [D+A+K+V+T ]
幻和:4D+2A+2K+2V+2T。
※※※
現在,隨意的使用大量的、D,A,K,V,T結構的、 自然數的密碼,代入「元素碼4階解碼器」,便可以製造出大量的「 自然數等冪和4階幻方」。以下用三組作出示範。
※※※
三組D,A,K,V,T結構的、自然數的密碼;
№01:D=2,A= -1,K=2,V=4,T=8。
№02:D=2,A= -1,K=4,V=2,T=8。
№03:D=2,A= -1,K=8,V=4,T=2。
這三組自然數的密碼,是遵守「自然數密碼的兩法則」得出: http://blog.itpub.net/20489909/viewspace-1389221/
※※※
這三組自然數的密碼,分別代入「元素碼4階解碼器」, 便可以得出三個的「自然數等冪和4階幻方」;
「自然數等冪和4階幻方№01」
01 16 11 06
13 04 07 10
08 09 14 03
12 05 02 15
幻和=34
「自然數等冪和4階幻方№02」
01 16 13 04
11 06 07 10
08 09 12 05
14 03 02 15
幻和=34
「自然數等冪和4階幻方№03」
01 16 11 06
07 10 13 04
14 03 08 09
12 05 02 15
幻和=34
※※※
特別指出,構成以上三個幻方的上部分與下部分, 都是這組唯一性的k=1,2,3的等冪和數組;
1,4,6,7,10,11,13,16=2,3,5,8,9, 12,14,15。
特別指出,不存在有別於這數組,而又k=1,2,3的第二解。
※※※※※※
同理,可以得出「自然數等冪和8階幻方」;
http://blog.itpub.net/20489909/viewspace-2150834/
※※※※※※
同理,可以得出「自然數等冪和16階幻方」。
有趣的是,經過蘇茂挺先生(福建福州)的指出, 之前的一幅作品,證實也是一個「自然數等冪和16階幻方」 。幻方的上部分是奇元素碼數字群組成, 幻方的下部分是偶元素碼數字群組成。上部分、下部分構成k=1, 2,3,4,5,6,7;
http://blog.chinaunix.net/uid-20489909-id-5765642.html
※※※※※※
◆關於自然數等冪和4階幻方中的元素碼,以及產生出k=1,2, 3的恆等式,作出以下詳細的論述◆
※※※
此刻回看「元素碼4階解碼器」, 可以十分清楚的看到裡面的元素碼,奇偶含量的分佈狀態;
「元素碼奇偶含量分布圖」
1 3 3 1
3 1 3 1
2 2 2 2
2 2 0 4
(元素碼是指:A,K,V,T)
很明顯,圖表展示出:上部分是奇元素碼, 下部分是偶元素碼。
※※※
根據等冪和的屬性,「元素碼4階解碼器」可以抹去D,得出只由元素碼A,K,V, T組成的恆等式;
(A)^k +(K)^k +(V)^k +(A+K+V)^k +( T)^k +(A+K+T)^k +(A+V+T)^k +(K+V+ T)^k
=
(A+K)^k +(A+V)^k +(A+T)^k +( K+V)^k +(K+T)^k +(V+T)^k +(A+K+V+ T)^k
根據「圖譜嵌入式操作」的解釋,恆等式具備1次方、2次方、3次方都可以成立,而且A,K,V,T的取值是任意。
※※※
圖譜嵌入式操作: http://blog.itpub.net/20489909/viewspace-1376377/
※※※※※※
萬樹軍
2018,02,08。
※※※※※※
定理:一個自然數構造的2^n階幻方, 上部分與下部分能夠構成等冪和k=1,2,3……(2n-1), 就稱呼這個幻方叫「自然數等冪和幻方」。構造這樣性質的幻方, 只有唯一的一組解。
※※※※※※
這一組解的詳細解釋:兩部分組成,分別是奇元素碼數字群、 偶元素碼數字群,分別作為幻方的上部分、下部分。 奇元素碼數字群、偶元素碼數字群,是自然數按照「 自然數的新奇偶法」得出。
「自然數的新奇偶法」 http://blog.itpub.net/20489909/viewspace-1779422/
※※※※※※
◆幻方的階數遞增,等冪和的次數遞增,符合資格的解◆
4階幻方:上部分與下部分構成等冪和k=1,2,3,只有唯一的一組解。
8階幻方:上部分與下部分構成等冪和k=1,2,3,4,5,只有唯一的一組解。
16階幻方:上部分與下部分構成等冪和k=1,2,3,4,5, 6,7,只有唯一的一組解。
2^5階幻方:上部分與下部分構成等冪和k=1,2,3,4,5, 6,7,8,9,只有唯一的一組解。
……
2^n階幻方:上部分與下部分,等冪和k=1,2,3……( 2n-1),只有唯一的一組解。
※※※※※※
◆示範如何大量製作只有一組解,上部分與下部分k=1,2, 3的「4階自然數等冪和幻方」◆
首先使用自然數新奇偶法,從自然數1~16分拆出兩個數字群: 奇元素碼數字群、偶元素碼數字群。
奇元素碼數字群:2,3,5,8,9,12,14,15。
偶元素碼數字群:1,4,6,7,10,11,13,16。
奇元素碼數字群作上部分,偶元素碼數字群作下部分, 製造出一個元素碼上下歸邊的「自然數等冪和4階幻方」。
「自然數等冪和4階幻方」
02 15 12 05
14 03 08 09
07 10 13 04
11 06 01 16
幻和=34。
然後,逆向操作自然數的密碼:D=1,A=1,K=2,V=4, T=8。得出元素碼4階解碼器。
「元素碼4階解碼器」
[D+A ] [D+K+V+T ] [D+A+K+T ] [D+V ]
[D+A+V+T ] [D+K ] [D+A+K+V ] [D+T ]
[D+K+V ] [D+A+T ] [D+V+T ] [D+A+K ]
[D+K+T ] [D+A+V ] [D ] [D+A+K+V+T ]
幻和:4D+2A+2K+2V+2T。
※※※
現在,隨意的使用大量的、D,A,K,V,T結構的、 自然數的密碼,代入「元素碼4階解碼器」,便可以製造出大量的「 自然數等冪和4階幻方」。以下用三組作出示範。
※※※
三組D,A,K,V,T結構的、自然數的密碼;
№01:D=2,A= -1,K=2,V=4,T=8。
№02:D=2,A= -1,K=4,V=2,T=8。
№03:D=2,A= -1,K=8,V=4,T=2。
這三組自然數的密碼,是遵守「自然數密碼的兩法則」得出: http://blog.itpub.net/20489909/viewspace-1389221/
※※※
這三組自然數的密碼,分別代入「元素碼4階解碼器」, 便可以得出三個的「自然數等冪和4階幻方」;
「自然數等冪和4階幻方№01」
01 16 11 06
13 04 07 10
08 09 14 03
12 05 02 15
幻和=34
「自然數等冪和4階幻方№02」
01 16 13 04
11 06 07 10
08 09 12 05
14 03 02 15
幻和=34
「自然數等冪和4階幻方№03」
01 16 11 06
07 10 13 04
14 03 08 09
12 05 02 15
幻和=34
※※※
特別指出,構成以上三個幻方的上部分與下部分, 都是這組唯一性的k=1,2,3的等冪和數組;
1,4,6,7,10,11,13,16=2,3,5,8,9, 12,14,15。
特別指出,不存在有別於這數組,而又k=1,2,3的第二解。
※※※※※※
同理,可以得出「自然數等冪和8階幻方」;
http://blog.itpub.net/20489909/viewspace-2150834/
※※※※※※
同理,可以得出「自然數等冪和16階幻方」。
有趣的是,經過蘇茂挺先生(福建福州)的指出, 之前的一幅作品,證實也是一個「自然數等冪和16階幻方」 。幻方的上部分是奇元素碼數字群組成, 幻方的下部分是偶元素碼數字群組成。上部分、下部分構成k=1, 2,3,4,5,6,7;
http://blog.chinaunix.net/uid-20489909-id-5765642.html
※※※※※※
◆關於自然數等冪和4階幻方中的元素碼,以及產生出k=1,2, 3的恆等式,作出以下詳細的論述◆
※※※
此刻回看「元素碼4階解碼器」, 可以十分清楚的看到裡面的元素碼,奇偶含量的分佈狀態;
「元素碼奇偶含量分布圖」
1 3 3 1
3 1 3 1
2 2 2 2
2 2 0 4
(元素碼是指:A,K,V,T)
很明顯,圖表展示出:上部分是奇元素碼, 下部分是偶元素碼。
※※※
根據等冪和的屬性,「元素碼4階解碼器」可以抹去D,得出只由元素碼A,K,V, T組成的恆等式;
(A)^k +(K)^k +(V)^k +(A+K+V)^k +( T)^k +(A+K+T)^k +(A+V+T)^k +(K+V+ T)^k
=
(A+K)^k +(A+V)^k +(A+T)^k +( K+V)^k +(K+T)^k +(V+T)^k +(A+K+V+ T)^k
根據「圖譜嵌入式操作」的解釋,恆等式具備1次方、2次方、3次方都可以成立,而且A,K,V,T的取值是任意。
※※※
圖譜嵌入式操作: http://blog.itpub.net/20489909/viewspace-1376377/
※※※※※※
萬樹軍
2018,02,08。
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/20489909/viewspace-2150948/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/20489909/viewspace-2150948/