類自然數(lzrs)等冪和幻方的猜想
※※※※※※
猜想:一個類自然數(lzrs)構造的2^n階幻方, 假如要求幻方的上部分與下部分 ,能夠構成等冪和k=1, 2,3……(2n-1)的 , 估計符合資格的解,可能只有2n組。
※※※※※※
◆幻方的階數遞增,等冪和的次數遞增,符合資格的解◆
4階幻方:上部分與下部分構成等冪和k=1,2,3,有4組解。
8階幻方:上部分與下部分可以構成等冪和k=1,2,3,4, 5,有6組解。
16階幻方:上部分與下部分可以構成等冪和k=1,2,3,4, 5,6,7,有8組解。
2^5階幻方:上部分與下部分能夠構成等冪和k=1,2,3, 4,5,6,7,8,9,有10組解。
……
2^n階幻方:上部分與下部分能夠構成等冪和k=1,2,3…… (2n-1),有2n組解。
※※※※※※
◆示範製作「類自然數(lzrs)等冪和4階幻方」的4組解◆
首先取用博文「自然數等冪和幻方定理」裡面的元素碼4階解碼器。
「元素碼4階解碼器」
[D+A ] [D+K+V+T ] [D+A+K+T ] [D+V ]
[D+A+V+T ] [D+K ] [D+A+K+V ] [D+T ]
[D+K+V ] [D+A+T ] [D+V+T ] [D+A+K ]
[D+K+T ] [D+A+V ] [D ] [D+A+K+V+T ]
幻和:4D+2A+2K+2V+2T。
為了令左上角是-1,方便突出觀看時的效果, 元素碼4階解碼器根據解碼器個人化選擇的做法,作出變體,得出: 變體元素碼4階解碼器。
( 解碼器個人化選擇: http://blog.itpub.net/20489909/viewspace-1389857/ )
「變體元素碼4階解碼器」
[D ] [D+A+K+V+T ] [D+K+T ] [D+A+V ]
[D+V+T ] [D+A+K ] [D+K+V ] [D+A+T ]
[D+A+K+V ] [D+T ] [D+A+V+T ] [D+K ]
[D+A+K+T ] [D+V ] [D+A ] [D+K+V+T ]
幻和:4D+2A+2K+2V+2T。
然後,使用D,A,K,V,T構造的~夢幻之匙,代入 變體元素碼4階解碼器,便可以得到:類自然數(lzrs) 等冪和4階幻方。
( D,A,K,V,T構造的~夢幻之匙: http://blog.itpub.net/20489909/viewspace-2126073/ )
選擇4組代表性的~夢幻之匙;
№01~夢幻之匙8A-1:D= -1,A=17,K= -2,V= -4,T= -8。
№02~夢幻之匙8B-1:D= -1,A= -1,K=17,V= -4,T= -8。
№03~夢幻之匙8C-1:D= -1,A= -1,K= -2 V=17,T= -8。
№04~夢幻之匙8D-1:D= -1,A= -1,K= -2,V= -4,T=17。
分別代入變體元素碼4階解碼器,得出類自然數( lzrs)等冪和4階幻方的4組解;
「類自然數(lzrs)等冪和4階幻方№01」
-01 02 -11 12
-13 14 -07 08
10 -09 04 -03
06 -05 16 -15
幻和= 2。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),2, (-7),8,(-11),12,(-13) 14=(-3),4,(-5),6,(-9),10,(-15) ,16。
k=1:左邊=右邊=4。
k=2:左邊=右邊=748。
k=3:左邊=右邊=1120。
「類自然數(lzrs)等冪和4階幻方№02」
-01 03 08 -06
-13 15 12 -10
11 -09 -14 16
07 -05 -02 04
幻和= 4。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),3, (-6),8,(-10),12,(-13),15=(-2), 4,(-5),7,(-9),11,(-14),16。
k=1:左邊=右邊=8。
k=2:左邊=右邊=748。
k=3:左邊=右邊=2228。
「類自然數(lzrs)等冪和4階幻方№03」
-01 05 -11 15
08 -04 14 -10
13 -09 07 -03
-12 16 -02 06
幻和= 8。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),(- 4)5,8(-10),(-11),14,15=(-2),(- 3),6,7,(-9),(-12),13,16。
k=1:左邊=右邊=16。
k=2:左邊=右邊=748。
k=3:左邊=右邊=4360。
「類自然數(lzrs)等冪和4階幻方№04」
-01 09 14 -06
12 -04 -07 15
-08 16 11 -03
13 -05 -02 10
幻和= 16。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),(- 4),(-6),(-7),9,12,14,15=(-2),( -3),(-5),(-8),10,11,13,16。
k=1:左邊=右邊=32。
k=2:左邊=右邊=748。
k=3:左邊=右邊=7952。
※※※※※※
特別指出,以上4組解的「類自然數(lzrs)等冪和4階幻方」 ,並不是奇偶元素碼上下歸邊型,有別於只有1組解的「 自然數等冪和4階幻方」。
( 自然數等冪和4階幻方: http://blog.itpub.net/20489909/viewspace-2150948/ )
※※※※※※
同理,類自然數(lzrs)等冪和8階幻方,6組解;
※※※
第1組(5次等冪和8階幻方A): http://blog.chinaunix.net/uid-20489909-id-5230524.html
※※※
第2組(5次等冪和8階幻方B): http://blog.chinaunix.net/uid-20489909-id-5277092.html
※※※
第3組(5次等冪和8階幻方C): http://blog.chinaunix.net/uid-20489909-id-5277092.html
※※※
第4組(5次等冪和8階幻方D): http://blog.chinaunix.net/uid-20489909-id-5277436.html
※※※
第5組(5次等冪和8階幻方E): http://blog.chinaunix.net/uid-20489909-id-5277436.html
※※※
第6組(5次等冪和8階幻方F): http://blog.chinaunix.net/uid-20489909-id-5285697.html
※※※※※※
同理:可以得出「類自然數(lzrs)等冪和2^n階幻方」 的2n組解。
※※※※※※
萬樹軍
2018,02,10。
※※※※※※
猜想:一個類自然數(lzrs)構造的2^n階幻方, 假如要求幻方的上部分與下部分 ,能夠構成等冪和k=1, 2,3……(2n-1)的 , 估計符合資格的解,可能只有2n組。
※※※※※※
◆幻方的階數遞增,等冪和的次數遞增,符合資格的解◆
4階幻方:上部分與下部分構成等冪和k=1,2,3,有4組解。
8階幻方:上部分與下部分可以構成等冪和k=1,2,3,4, 5,有6組解。
16階幻方:上部分與下部分可以構成等冪和k=1,2,3,4, 5,6,7,有8組解。
2^5階幻方:上部分與下部分能夠構成等冪和k=1,2,3, 4,5,6,7,8,9,有10組解。
……
2^n階幻方:上部分與下部分能夠構成等冪和k=1,2,3…… (2n-1),有2n組解。
※※※※※※
◆示範製作「類自然數(lzrs)等冪和4階幻方」的4組解◆
首先取用博文「自然數等冪和幻方定理」裡面的元素碼4階解碼器。
「元素碼4階解碼器」
[D+A ] [D+K+V+T ] [D+A+K+T ] [D+V ]
[D+A+V+T ] [D+K ] [D+A+K+V ] [D+T ]
[D+K+V ] [D+A+T ] [D+V+T ] [D+A+K ]
[D+K+T ] [D+A+V ] [D ] [D+A+K+V+T ]
幻和:4D+2A+2K+2V+2T。
為了令左上角是-1,方便突出觀看時的效果, 元素碼4階解碼器根據解碼器個人化選擇的做法,作出變體,得出: 變體元素碼4階解碼器。
( 解碼器個人化選擇: http://blog.itpub.net/20489909/viewspace-1389857/ )
「變體元素碼4階解碼器」
[D ] [D+A+K+V+T ] [D+K+T ] [D+A+V ]
[D+V+T ] [D+A+K ] [D+K+V ] [D+A+T ]
[D+A+K+V ] [D+T ] [D+A+V+T ] [D+K ]
[D+A+K+T ] [D+V ] [D+A ] [D+K+V+T ]
幻和:4D+2A+2K+2V+2T。
然後,使用D,A,K,V,T構造的~夢幻之匙,代入 變體元素碼4階解碼器,便可以得到:類自然數(lzrs) 等冪和4階幻方。
( D,A,K,V,T構造的~夢幻之匙: http://blog.itpub.net/20489909/viewspace-2126073/ )
選擇4組代表性的~夢幻之匙;
№01~夢幻之匙8A-1:D= -1,A=17,K= -2,V= -4,T= -8。
№02~夢幻之匙8B-1:D= -1,A= -1,K=17,V= -4,T= -8。
№03~夢幻之匙8C-1:D= -1,A= -1,K= -2 V=17,T= -8。
№04~夢幻之匙8D-1:D= -1,A= -1,K= -2,V= -4,T=17。
分別代入變體元素碼4階解碼器,得出類自然數( lzrs)等冪和4階幻方的4組解;
「類自然數(lzrs)等冪和4階幻方№01」
-01 02 -11 12
-13 14 -07 08
10 -09 04 -03
06 -05 16 -15
幻和= 2。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),2, (-7),8,(-11),12,(-13) 14=(-3),4,(-5),6,(-9),10,(-15) ,16。
k=1:左邊=右邊=4。
k=2:左邊=右邊=748。
k=3:左邊=右邊=1120。
「類自然數(lzrs)等冪和4階幻方№02」
-01 03 08 -06
-13 15 12 -10
11 -09 -14 16
07 -05 -02 04
幻和= 4。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),3, (-6),8,(-10),12,(-13),15=(-2), 4,(-5),7,(-9),11,(-14),16。
k=1:左邊=右邊=8。
k=2:左邊=右邊=748。
k=3:左邊=右邊=2228。
「類自然數(lzrs)等冪和4階幻方№03」
-01 05 -11 15
08 -04 14 -10
13 -09 07 -03
-12 16 -02 06
幻和= 8。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),(- 4)5,8(-10),(-11),14,15=(-2),(- 3),6,7,(-9),(-12),13,16。
k=1:左邊=右邊=16。
k=2:左邊=右邊=748。
k=3:左邊=右邊=4360。
「類自然數(lzrs)等冪和4階幻方№04」
-01 09 14 -06
12 -04 -07 15
-08 16 11 -03
13 -05 -02 10
幻和= 16。
上部分與下部分構成k=1,2,3的等冪和數組 ;
(-1),(- 4),(-6),(-7),9,12,14,15=(-2),( -3),(-5),(-8),10,11,13,16。
k=1:左邊=右邊=32。
k=2:左邊=右邊=748。
k=3:左邊=右邊=7952。
※※※※※※
特別指出,以上4組解的「類自然數(lzrs)等冪和4階幻方」 ,並不是奇偶元素碼上下歸邊型,有別於只有1組解的「 自然數等冪和4階幻方」。
( 自然數等冪和4階幻方: http://blog.itpub.net/20489909/viewspace-2150948/ )
※※※※※※
同理,類自然數(lzrs)等冪和8階幻方,6組解;
※※※
第1組(5次等冪和8階幻方A): http://blog.chinaunix.net/uid-20489909-id-5230524.html
※※※
第2組(5次等冪和8階幻方B): http://blog.chinaunix.net/uid-20489909-id-5277092.html
※※※
第3組(5次等冪和8階幻方C): http://blog.chinaunix.net/uid-20489909-id-5277092.html
※※※
第4組(5次等冪和8階幻方D): http://blog.chinaunix.net/uid-20489909-id-5277436.html
※※※
第5組(5次等冪和8階幻方E): http://blog.chinaunix.net/uid-20489909-id-5277436.html
※※※
第6組(5次等冪和8階幻方F): http://blog.chinaunix.net/uid-20489909-id-5285697.html
※※※※※※
同理:可以得出「類自然數(lzrs)等冪和2^n階幻方」 的2n組解。
※※※※※※
萬樹軍
2018,02,10。
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/20489909/viewspace-2151008/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/20489909/viewspace-2151008/