对于一个连通图,如果任意两点至少存在两条点不重复路径,则称这个图为点双连通的(简称双连通);如果任意两点至少存在两条边不重复路径,则称该图为边双连通的。点双连通图的定义等价于任意两条边都同在一个简单环中,而边双连通图的定义等价于任意一条边至少在一个简单环中。对一个无向图,点双连通的极大子图称为点双连通分量(简称双连通分量),边双连通的极大子图称为边双连通分量。
删除一条边以后还互相连通的教室就是一个双联通分量里面的,这题要求的就是 删除哪一个桥之后,分开的两个双联通分量的权值(人数) 相差最小。
先跑一边tarjan进行双联通缩点,然后用缩的点建图,便是一棵树,树的每条边就是原图中的桥,剩下的就是简单dp更新最小答案。如果原图中的双联通分量只有一个,那就是“impossable”。
INF的值一定要开大!!!!!!!!
我踏马因为这wa了N发!!!!
#include<cstdio>
#include<stack>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 10005;
const int maxm = 20005;
int n,m;
int va[maxn];
struct node
{
int to;
int next;
node(){}
node(int a,int b):to(a),next(b){}
}edge[maxm<<1],tree[maxm<<1];
int head[maxn],dfn[maxn],low[maxn],belong[maxn],thead[maxn],ans[maxn];
int tot,ti,coun,ttot,res,people;
stack<int>s;
void add_edge(int u,int v)
{
edge[tot] = node(v,head[u]);
head[u] = tot++;
edge[tot] = node(u,head[v]);
head[v] = tot++;
}
void tarjan(int u,int fa)
{
dfn[u] = ++ti; low[u] = ti; s.push(u);
int flag = 0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v = edge[i].to;
if(v==fa&&flag==0){flag = 1;continue;}
if(!dfn[v]){
tarjan(v,u);
low[u] = min(low[u],low[v]);
}else if(belong[v]==-1) low[u] = min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
int y;
coun++;
do{
y = s.top(); s.pop();
ans[coun] += va[y];
belong[y] = coun;
}while(y!=u);
}
}
int cbh(int u,int fa)
{
int sum = ans[u];
dfn[u] = 1;
for(int i=thead[u];i!=-1;i=tree[i].next)
{
int v = tree[i].to;
if(v==fa||dfn[v]) continue;
sum+=cbh(v,u);
}
res = min(res,abs(2*sum-people));
return sum;
}
int main()
{
int u,v;
while(scanf("%d%d",&n,&m)!=EOF)
{
people = 0;
for(int i=0;i<n;i++) scanf("%d",&va[i]),people+=va[i];
tot = 0;
memset(head,-1,sizeof(head));
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
}
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(ans,0,sizeof(ans));
memset(belong,-1,sizeof(belong));
coun = 0;ti = 0;
tarjan(0,0);
if(coun==1){printf("impossible\n");continue;}
// printf("%d\n",coun);
ttot = 0;
memset(thead,-1,sizeof(thead));
memset(dfn,0,sizeof(dfn));
for(int i=0;i<n;i++)
{
for(int j=head[i];j!=-1;j=edge[j].next)
{
v = edge[j].to;
if(belong[i]!=belong[v])
{
tree[ttot] = node(belong[v],thead[belong[i]]);
thead[belong[i]] = ttot++;
}
}
}
res = 0xfffffff;
cbh(1,0);
printf("%d\n",res);
}
return 0;
}