题目:
众所周知,HDU的考研教室是没有空调的,于是就苦了不少不去图书馆的考研仔们。Lele也是其中一个。而某教室旁边又摆着两个未装上的空调,更是引起人们无限YY。
一个炎热的下午,Lele照例在教室睡觉的时候,竟然做起了空调教室的美梦。
Lele梦到学校某天终于大发慈悲给某个教室安上了一个空调。而且建造了了M条通气管道,让整个教学楼的全部教室都直接或间接和空调教室连通上,构成了教室群,于是,全部教室都能吹到空调了。
不仅仅这样,学校发现教室人数越来越多,单单一个空调已经不能满足大家的需求。于是,学校决定封闭掉一条通气管道,把全部教室分成两个连通的教室群,再在那个没有空调的教室群里添置一个空调。
当然,为了让效果更好,学校想让这两个教室群里的学生人数尽量平衡。于是学校找到了你,问你封闭哪条通气管道,使得两个教室群的人数尽量平衡,并且输出人数差值的绝对值。
Input
本题目包含多组数据,请处理到文件结束。
每组测试第一行包含两个整数N和M(0<N<=10000,0<M<20000)。其中N表示教室的数目(教室编号从0到N-1),M表示通气管道的数目。
第二行有N个整数Vi(0<=Vi<=1000),分别代表每个教室的人数。
接下来有M行,每行两个整数Ai,Bi(0<=Ai,Bi<N),表示教室Ai和教室Bi之间建了一个通气管道。
Output
对于每组数据,请在一行里面输出所求的差值。
如果不管封闭哪条管道都不能把教室分成两个教室群,就输出"impossible"。
Sample Input
4 3 1 1 1 1 0 1 1 2 2 3 4 3 1 2 3 5 0 1 1 2 2 3
Sample Output
0 1
题意:给出n个点和m条无向边,每个点都有权值,要求去掉一条边,使得整个图变成两个连通块,并且两者的权值总和之差最小
思路:
- 很明显去掉的这条边是割边,才能是图的连通性发生改变。因此,找出所有的边双连通分量,缩点,同属于一个分量的各个点都是等价的,因为无论去掉哪条边,连通性都不会改变。所以可以缩成一点
- 缩点后重新建图,求出每个点的权值,跑一遍dfs,求出每个结点及同属于一个分支的子孙结点的权值总和,由于缩点后的图是没有环的,每一条边都可以是割边,所以dfs的时候假设从当前节点处分开时的差值是多少,取最小即可。
注意:
- 做的时候isbridge初始化只初始化了n个点,wa了好多发,由于无向图建立正反向边,所以isbridge变量需要初始化2*m个
- 对于前向星还是要多注意点,特别是无向图建立正反边,边下标是从2开始的(2,3一对,4,5一对。。)可以发现如果当前边是i,则i^1必然是它的方向边。
- 有了这个规律,重新建图的时候就可以直接取边来建图了,不用枚举每个点的每一条边(那样好像超时了,也可能是码歪了)
代码
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<stack>
#include<vector>
#define rep(i,e) for(int i=0;i<(e);++i)
#define rep1(i,e) for(int i=1;i<=(e);++i)
#define repx(i,x,e) for(int i=(x);i<=(e);++i)
#define pii pair<int,int>
#define X first
#define Y second
#define PB push_back
#define MP make_pair
#define mset(var,val) memset(var,val,sizeof(var))
#define scd(a) scanf("%d",&a)
#define scdd(a,b) scanf("%d%d",&a,&b)
#define scddd(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define IOS ios::sync_with_stdio(false);cin.tie(0)
using namespace std;
#ifdef LOCAL
template<typename T>
void dbg(T t){
cout<<t<<" "<<endl;
}
template<typename T, typename... Args>
void dbg(T t, Args... args){
cout<<t<<" ";dbg(args...);
}
#else
#define dbg(...)
#endif // local
typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int mod = 1e9+7;
const int N = 500+10;
typedef long long ll;
const int maxn = 1e4+10;
const int maxm =2e4+10;
int v[maxn];
struct node {
int u,v,next;
}edge[maxm],nedge[maxm];
int head[maxn],nhead[maxn];
int cnt = 1,ncnt = 1;
int low[maxn],dfn[maxn],bccno[maxn],dfn_cnt,bcc_cnt;
bool vis[maxn],isbridge[maxm];
int weight[maxn];
int ans = inf;
int sum;
void add(int u,int v)
{
edge[++cnt].v = v;
edge[cnt].u = u;
edge[cnt].next = head[u];
head[u] = cnt;
edge[++cnt].v = u;
edge[cnt].u = v;
edge[cnt].next = head[v];
head[v] = cnt;
}
void nadd(int u,int v)
{
nedge[++ncnt].v = v;
nedge[ncnt].u = u;
nedge[ncnt].next = nhead[u];
nhead[u] = ncnt;
nedge[++ncnt].v = u;
nedge[ncnt].u = v;
nedge[ncnt].next = nhead[v];
nhead[v] = ncnt;
}
void tarjan(int u,int fa)
{
low[u] = dfn[u] = ++dfn_cnt;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if(!dfn[v])
{
tarjan(v,u);
low[u] = min(low[u],low[v]);
if(low[v] > dfn[u])
isbridge[i] = isbridge[i^1] = true;
}else if(dfn[v] < dfn[u] && v != fa)
low[u] = min(low[u],dfn[v]);
}
}
void dfs_bcc(int u,int id)
{
bccno[u] = id;
for(int i = head[u]; ~i; i = edge[i].next)
{
if(!isbridge[i])
{
int v = edge[i].v;
if(!bccno[v]) dfs_bcc(v,id);
}
}
}
int dfs(int u)
{
vis[u] = true;
int res = weight[u];
for(int i = nhead[u]; ~i; i = nedge[i].next)
{
int v = nedge[i].v;
if(!vis[v])
res += dfs(v);
}
//dbg("*",res,sum);
if(abs((sum-res)-res) < ans) ans = abs(sum-res*2);
return res;
}
void work()
{
int n,m,x,y;
while(~scanf("%d%d",&n,&m))
{
for(int i = 0; i <= n; i++)
{
low[i] = dfn[i] = bccno[i] = vis[i] = weight[i] = 0;
nhead[i] = head[i] = -1;
isbridge[i] = 0;
}
//memset(isbridge,0,sizeof(isbridge));
bcc_cnt = 0; ncnt = 1; cnt = 1; dfn_cnt = 0;
ans = inf; sum = 0;
for(int i = 0; i < n; i++)
{
scanf("%d",&v[i]);
sum += v[i];
}
for(int i = 0; i < m; i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i = 0; i < n; i++)
{
if(!dfn[i])
tarjan(i,-1);
}
for(int i = 0; i < n; i++)
{
if(!bccno[i]) dfs_bcc(i,++bcc_cnt);
}
//dbg(bcc_cnt);
if(bcc_cnt == 1)
{
printf("impossible\n");
continue;
}
for(int i = 0; i < n; i++)
{
weight[bccno[i]] += v[i];
}
for(int i = 2; i <= cnt; i += 2) //直接取出每一条边建图
{
int u = edge[i].u;
int v = edge[i].v;
if(bccno[u] != bccno[v])
{
nadd(bccno[u],bccno[v]);
}
}
for(int i = 1; i <= bcc_cnt; i++)
{
if(!vis[i])
dfs(i);
}
printf("%d\n",ans);
}
}
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
// IOS;
work();
return 0;
}