讲人话系列——分段约束的整数规划问题

本文介绍了如何将包含分段约束的整数规划问题转化为标准形式,以实现全局最优解的求解。通过实例展示了如何利用新增变量和条件,将非线性的起送量约束转换为线性约束,从而简化问题并利用现有优化库进行求解。
摘要由CSDN通过智能技术生成

概述

运筹学是一个应用广泛的学科,在电商的物流、仓储都会有很多应用。今天我们来讲一个比较特殊的形式“分段约束”,以及如何将分段约束转化标准的整数规划问题。

问题描述

今日主角:整数规划
问题定义:标准整数规划问题下,包含了特殊的分段约束。(x = 0 or x > 1000)
问题举例:供应链入仓推荐、车辆运输规划、采购规划等各种整数规划问题。
技术价值:把看似非线性的问题,转化成标准整数规划,可以快速获取全局最优解。

任务抽象

因为运筹学的问题,不太能像推荐、分类那样讲的过于抽象且生动,这里要抽象无非就是一堆条件求一个最优值,数学能算出来就好了,这样就没太大意思了。所以我先对问题做一个明确的定义。

任务:这里我们以车辆送货为例。
$minz = \sum tij * f(C_i,D_j) ,j \in J,i \in I $

  • 上面这个式子里面C代表出发地,D代表目的地,f函数代表两地之间运输过程产生的费用(可计算), t i j t_{ij} tij代表从运输货物的数量。

任务约束:

  • 起送量约束: s . t . ∑ j ∈ J t i j > 100 o r = 0 ( i = 1 , 2.. ) s.t. \sum_{j \in J} t_{ij} > 100 or = 0 (i=1,2..) s.t.jJ
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值