KMP字符串匹配算法

本文用于记录个人算法竞赛学习,仅供参考

目录

一.KMP

二.next数组(前缀表)

三.具体实现模板

四.题解


先来看一个问题

28. 找出字符串中第一个匹配项的下标 - 力扣(LeetCode)

 对于这个问题,一般暴力做法是:遍历主串,以主串的每个元素为开头分别与模式串对比,遇到不匹配,主串走下一位,模式串重新开始 一 一对比,假设主串长度为n,模式串长度为m,那么时间复杂度是O(n * m)。

使用KMP解决这个问题时间复杂度只需要O(n + m)。

一.KMP

KMP主要用于字符串匹配的场景中,用于解决字符串匹配、重复子字符串等问题。

1.思想:当出现字符串不匹配时,可以通过一部分之已经匹配过的文本内容,利用这些信息避免从头再去匹配。

2.与暴力匹配的区别:KMP主串全程只遍历一遍,从不走回头路; 每次不匹配时模式串不需要回退到起点。

 能做到上述操作的主要原因是next数组的功能。

二.next数组(前缀表)

1.前缀表定义:记录下标i(包括i)之前的字符串中有多长的最长相同前后缀

前缀是不包含最后一个字符的连续子字符串;后缀是不包含第一个字符的连续子字符串。

2.前缀表的作用:用来模式串的回退,它记录了主串与模式串不匹配时模式串应该从哪里开始从新开始。

3.模拟匹配(这里是假设字符串下标是从1开始的,这样比较好实现):

3.求next数组

记录下标i(包括i)之前的字符串中有多长的最长相同前后缀,其实在实现next数组时,和主串与模式串匹配大差不差;

因为第一个位置既不能是前缀又不能是后缀,所以第一位(下标1)是0,直接跳过第一位从第二位开始求next数组;

现在可以将模式串看成是两个串,一个是从第二位开始的“主串”,一个是从第一位开始的“模式串”,为什么可以这样想,因为在第一位不存在前后缀,形成前后缀至少需要两个字符,这就形成了错位,后缀在后,前缀在前,求next数组就是求最长相同前后缀,这个过程相当于前缀与后缀在做匹配的过程。

三.具体实现模板

很多人都感觉KMP难以理解,是因为实现方式有很多种,都没有同一的实现方式,使很多人查找资料将多种解释混在一起就晕了。

这里先将实现细节约定熟成:

主串,模式串都是下标从1开始的字符串,这样好处理边界条件,next数组也是从下标1开始才有数据的。

//KMP伪代码

//s[] 是主串, p[] 是模式串, n 是主串长度, m 是模式串长度
//主串,模式串,next 数组都是下标从1开始才有 有效数据的

//求next数组
for (int i = 2, j = 0; i <= m; i++)
{
	while (j && p[i] != p[j + 1])
		j = next[j];
	if (p[i] == p[j + 1])
		j++;
	next[i] = j;
}

//匹配
for (int i = 1,j = 0; i <= n; i++)
{
	//回退
	while (j && s[i] != p[j + 1])
		j = next[j];
	if (s[i] == p[j + 1])
		j++;
	if (j == m)//模式串遍历完
	{
		j = next[j];
		//查找成功后的逻辑
	}
}

四.题解

所以开头的问题可以直接套用公式

class Solution {
public:
    int strStr(string haystack, string needle) {
        haystack.insert(0, 1, '0');
        needle.insert(0, 1, '0');
        int n = haystack.size() - 1;
        int m = needle.size() - 1;
        vector<int> next(m + 1);
        //求next数组
        for(int i = 2, j = 0; i <= m; i++)
        {
            while(j && needle[i] != needle[j + 1])
                j = next[j];
            if(needle[i] == needle[j + 1])
                j++;
            next[i] = j;
        }
        //匹配
        for(int i = 1, j = 0; i <= n; i++)
        {
            //回退
            while(j && haystack[i] != needle[j + 1])
                j = next[j];
            if(haystack[i] == needle[j + 1])
                j++;
            if(j == m)
            {
                return i - m;
            }
        }
        return -1;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Nemophila

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值