关于pycharm中pip版本10.0无法使用(pip升级失败)的终极解决办法

本文详细介绍了在PyCharm中遇到pip版本10.0升级失败的问题及解决方案。通过创建第三方库清单,删除旧虚拟环境,新建虚拟环境,激活并升级pip,最后恢复项目依赖库,确保pip成功更新到最新版本且项目不受影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景:

在使用pycharm(2018.3)创建python项目时,如果采用虚拟环境的方式,默认安装pip版本是10.0.1。执行pip list会提示

You are using pip version 10.0.1, however version 19.0.3 is   available.
You should consider upgrading via the 'python -m pip install --upgrade pip' command.

但是,在虚拟环境中执行

python -m pip install --upgrade pip

时就会出现如下错误导致升级失败,而且虚拟环境中原先的pip10也被破坏了。错误内容如下:

Installing collected packages: pip
  Found existing installation: pip 10.0.1
    Uninstalling pip-10.0.1:
      Successfully uninstalled pip-10.0.1
  Rolling back uninstall of pip
Exception:
Traceback (most recent call last):
  File "D:\appworks\pipdemo\venv\lib\site-packages\pip-10.0.1-py3.7.egg\pip\_internal\basecommand.py", line 228, in main
    status = self.run(options, args)
  File "D:\appworks\pipdemo\venv\lib\site-packages\pip-10.0.1-py3.7.egg\pip\_internal\commands\install.py", line 335, in run
    use_user_site=options.use_user_site,
  File "D:\appworks\pipdemo\venv\lib\site-packages\pip-10.0.1-py3.7.egg\pip\_internal\req\__init__.py", line 49, in install_given_reqs
    **kwargs
  File "D:\appworks\pipdemo\venv\lib\site-packages\pip-10.0.1-py3.7.egg\pip\_internal\req\req_install.py", line 748, in install
    use_user_site=use_user_site, pycompile=pycompile,
  File "D:\appworks\pipdemo\venv\lib\site-packages\pip-10.0.1-py3.7.egg\pip\_internal\req\req_install.py", line 961, in move_wheel_files
    warn_script_location=warn_script_location,
  File "D:\appworks\pipdemo\v
### 如何在 PyCharm 中配置和使用 CUDA #### 配置 Python 虚拟环境 为了确保 TensorFlow 和其他依赖项能够正常工作,建议创建一个新的 Python 虚拟环境。这可以通过 PyCharm 的集成工具轻松实现。 #### 安装必要的库 通过 PyCharm 内置的终端窗口执行如下命令来安装所需的软件包: ```bash pip install tensorflow-gpu itk ``` 此操作将下载并安装支持 GPU 加速版的 TensorFlow 及 Insight Segmentation and Registration Toolkit (ITK)[^1]。 #### 设置 CUDA 环境变量 对于 Windows 用户来说,正确设置系统的环境变量至关重要。具体做法是把 CUDA 工具包所在目录加入 PATH 环境变量列表内。假设当前使用的 CUDA 版本为 v10.0,则需添加以下路径至系统环境变量中[^4]: - `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin` - `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp` - `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib` - `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include` 注意,在 Windows 10 上面每条记录之间不需要加分号作为分隔符。 #### 测试 CUDA 是否成功安装 完成上述步骤后,可以在命令提示符(cmd)里运行下面这条指令验证 CUDA 编译器的存在及其版本信息: ```bash nvcc -V ``` 该命令应当返回有关已安装 CUDA ToolKit 的详情描述。 #### 使用国内源加速安装过程 考虑到网络状况可能影响下载速度,推荐采用清华大学开源软件镜像站提供的服务加快获取所需资源的速度。例如,当需要安装 PyTorch 库时可利用如下方式指定 URL 地址以提高效率[^2]: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113/ ``` 以上即是在 PyCharm 下配置及启用 CUDA 支持的方法概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值