zoj2745——dp

题意:构造指定长度由0和1组成的字符串,且满足任意连续子串中0的个数与1的个数之差的绝对值不大于指定的数k。输出满足条件的不同字符串的个数。

这种涉及到任意子区间的性质的问题,如果每个子区间都考虑是很难处理的。注意到0和1的个数之差是满足区间加减法的,也就是说如果我们知道所有后缀的0和1的个数之差那么任意子串的0和1的个数之差也可以间接得出,而在递推的过程中往字符串的末尾中添加字符的时候,会改变的只有所有的后缀——完美的动规出发点。

dp[i][a][b]代表长度为i,所有后缀中1的个数减去0的个数的最大值为a;0的个数减去1的个数最大为b的字符串的种数。注意:后缀包括所谓的空后缀,即a和b的值最小为0。这样所有子串中0的个数和1的个数的差的绝对值最大为a + b。

#include <iostream>
#include <cstdio>
#include <cstring>
#define lng long long
using namespace std;

int n, k;
lng dp[100][10][10];

int main()
{
    //freopen("in", "r", stdin);
    while(~scanf("%d %d", &n, &k))
    {
        for(int i = 0; i <= n; ++i) for(int j = 0; j <= k; ++j) for(int q = 0; q <= k; ++q) dp[i][j][q] = 0;
        dp[0][0][0] = 1;
        for(int i = 1; i <= n; ++i)
        {
            for(int j = 0; j <= k; ++j)
            {
                for(int q = 0; q <= k; ++q)
                {
                    if(j + q <= k)
                    {
                        //cout << i << " " << max(0, j - 1) << " " << q + 1 << "\n";
                        //cout << i << " " << j + 1 << " " << max(0, q - 1) << "\n";
                        dp[i][max(0, j - 1)][q + 1] += dp[i - 1][j][q];
                        dp[i][j + 1][max(0, q - 1)] += dp[i - 1][j][q];
                    }
                }
            }
        }
        lng res = 0;
        for(int i = 0; i <= k; ++i)
            for(int j = 0; j <= k; ++j)
                if(i + j <= k) res += dp[n][i][j];
        printf("%lld\n", res);
    }
    return 0;
}
/*
1 2
4 3

2
14
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值