langchain
文章平均质量分 95
cooldream2009
喜欢写代码,也喜欢和写代码的朋友一起探讨问题,分享收获,共同成长。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
构建智能知识库问答助手:LangChain与大语言模型的深度融合实践
LangChain 框架提出了“**检索增强生成(Retrieval-Augmented Generation, RAG)**”的解决思路:通过整合外部知识库与语言模型,使模型能够实时检索并利用最新的知识内容,进而实现基于本地知识的问答能力。本文将详细介绍如何利用 LangChain 框架构建一个知识库问答助手,解析其工作原理、关键技术环节以及优势特点。原创 2025-11-08 21:50:58 · 1051 阅读 · 0 评论 -
LangChain 构建智能多工具 Agent实践
借助 LangChain 框架,我们可以轻松地创建一个能与多种不同工具交互的 Agent,让它具备信息检索、搜索和多轮对话记忆的能力。本文将深入解析如何:- 使用语言模型的 **工具调用能力**;- 创建并封装 **本地数据库检索器(Retriever)**;- 集成 **在线搜索工具**;- 构建一个可 **多轮对话记忆** 的智能 Agent;- 通过示例代码展示从初始化到运行的完整过程。原创 2025-11-05 20:12:25 · 1476 阅读 · 0 评论 -
LangChain RAG 完整流程实战解析
在大语言模型(LLM)应用中,一个常见的问题是:模型虽然强大,但它的知识止步于训练数据。如果我们想让模型回答某份文件、公司资料或特定领域的知识,就需要一种机制——**让模型先“查资料”,再作答**。这正是 **RAG(Retrieval-Augmented Generation,检索增强生成)** 的核心思想。 RAG 技术通过在生成阶段引入检索模块,让模型在回答之前访问外部文档,从而实现“带知识”的智能问答。本文将结合一段完整的 **LangChain 实战代码**,一步步解析 RAG 的构建过原创 2025-11-05 19:10:48 · 1149 阅读 · 0 评论 -
深入解析 LangChain 检索器(Retriever)
RAG 的关键理念是让语言模型在生成回答之前,能够**从外部知识库中检索出相关信息**,再结合这些信息生成更准确、更可靠的结果。而在这一流程中,起到承上启下作用的核心组件就是 **Retriever(检索器)**。 它负责在庞大的文档库中,快速、精准地找到与用户问题最相关的文本片段,是整个 RAG 系统的“召回引擎”。本文将系统讲解 LangChain 中的 Retriever 模块,涵盖其原理、主要类型、调优方法以及在 RAG 架构中的实际应用。原创 2025-11-03 19:58:47 · 1326 阅读 · 0 评论 -
Chroma向量数据库详解:高效向量检索在AI应用中的实践指南
Chroma作为一个开源的向量数据库,以其简洁的API、轻量级部署和强大的检索能力脱颖而出。它不仅支持本地持久化存储,还无缝集成各种嵌入模型。本文基于Chroma的核心功能,系统介绍其向量检索机制。我们将从基础概念入手,逐步深入到高级检索方法,并结合实际代码示例和应用场景进行扩展。文章结构清晰:首先概述Chroma的架构与特性;其次剖析向量检索原理;然后详解六大检索接口;最后探讨实战应用与优化策略。原创 2025-11-01 16:53:33 · 1305 阅读 · 0 评论 -
LangChain 与 Chroma:构建高效向量存储系统的实践指南
本文基于实际实践经验,深入探讨如何使用 LangChain 集成 Chroma 来存储向量数据。我们将从向量数据库的基础概念入手,逐步剖析 Chroma 的存储模式、LangChain 的集成优势,并通过完整代码示例进行演示。同时,扩展到高级应用和优化策略,帮助读者构建robust的生产级系统。无论您是初学者还是有经验的开发者,这篇指南都能提供实用价值。原创 2025-11-01 16:27:54 · 1141 阅读 · 0 评论 -
深入理解 Text Embedding Models 在智能检索与语义理解中的作用
在当今的人工智能时代,文本嵌入(Text Embedding)已成为自然语言处理(NLP)和知识增强生成(RAG, Retrieval-Augmented Generation)系统的关键技术之一。无论是搜索引擎的语义检索、问答系统的上下文匹配,还是推荐系统中的文本相似度计算,背后几乎都离不开文档向量化(Document Vectorization)这一过程。本文将系统讲解文本嵌入模型的概念、原理、分类、实际应用及主流实现方式,并结合工程实践探讨如何在现代 AI 应用中高效地构建和利用嵌入模型。原创 2025-10-31 07:44:04 · 1231 阅读 · 0 评论 -
深入解析 LangChain 文本分块核心:RecursiveCharacterTextSplitter 全面指南
在向量化检索的世界里,切分策略直接影响**知识块的语义完整性**与**召回精度**。如果切得太碎,语义被割裂;如果切得太粗,召回会失焦。LangChain 在这一环节提供了一个极其经典且高效的组件——`RecursiveCharacterTextSplitter`,几乎成为所有 RAG 项目的“默认入口”。本文将深入解析该组件的设计原理、关键参数、使用方法与优缺点,并结合实际案例帮助你理解为什么它能成为最受欢迎的文本分块策略之一。原创 2025-10-30 10:07:01 · 1162 阅读 · 0 评论 -
LangChain 文本拆分核心解析:全面掌握 TextSplitter 的设计与实践
在 LangChain 框架中,这一核心能力由 **TextSplitter** 模块承担。它不仅能将文本按照不同策略进行高效拆分,还能保证语义连续性,为后续的向量化与检索提供高质量输入。本文将从设计原理、主要类型、关键参数、核心方法、应用示例与实践建议六个方面,全面解析 LangChain 的 TextSplitter。原创 2025-10-30 09:13:37 · 1244 阅读 · 0 评论 -
全面详解 Chunking 文本拆分策略
一个强大的 RAG 系统不仅依赖于先进的语言模型和向量数据库,更取决于一个常被忽视但至关重要的环节——Chunking(文本分块)。一个高质量的 Chunking 策略,是 RAG 成功的基石。它直接影响检索的相关性、答案的准确性以及系统的整体性能。本文将带你深入理解 Chunking,从基础原理到智能分块策略,帮助你全面掌握这一 RAG 核心技术。原创 2025-10-29 07:54:09 · 807 阅读 · 0 评论 -
LangChain 文档加载器:统一多源数据接入的基石
无论是企业内部知识问答、RAG(Retrieval-Augmented Generation)系统、还是法律文档分析、学术论文检索,模型都需要先“读懂”外部信息。而这些信息往往分散在各种来源:PDF 文件、网页、数据库、API、甚至云端文档系统。 如果每种数据源都需要独立解析,将导致极高的系统维护成本。为此,LangChain 提供了一个强大而优雅的组件:**文档加载器(Document Loaders)**。 它的目标就是让开发者只需关注「数据内容」,而无需关心「数据来源」。原创 2025-10-29 07:38:09 · 797 阅读 · 0 评论 -
LangChain RAG 流程与相关技术全解析
LangChain 作为最受欢迎的 LLM 应用框架之一,提供了强大的 RAG 实现机制。从文档加载、文本切分、嵌入生成、向量数据库管理到智能检索与生成增强,LangChain 让开发者能够快速搭建一个结构完善的知识增强问答系统。本文将系统解析 **LangChain 的 RAG 工作流程**,剖析其背后的关键技术原理,并附上一个可直接运行的检索问答示例。原创 2025-10-28 08:55:05 · 924 阅读 · 0 评论 -
LangChain Agent 实战入门:让大模型学会自主思考与调用工具
Agent 不仅让语言模型具备“推理”与“规划”能力,还能主动调用外部工具(如搜索、计算、数据库等),从而实现真正的“智能体思维”——即模型不仅能理解问题,还能动态决策、调用资源、执行任务、生成结果。本文将通过一个**简化且实用的 Python 示例**,带你从零理解 LangChain Agent 的工作原理与实际应用。原创 2025-10-28 07:36:11 · 952 阅读 · 0 评论 -
智能体(Agent):让大模型真正具备行动力的智能系统
单纯依靠模型本身仍然存在局限:它无法访问外部信息、无法执行操作,也难以完成复杂的多步骤任务。于是,“Agent(智能体)”的概念应运而生。Agent 的核心思想是**让大语言模型从“对话助手”升级为“行动智能体”**。它不再只是回答问题,而是能自主决策、调用工具、检索知识、执行操作,甚至与其他智能体协作,从而完成复杂的任务目标。本文将系统介绍智能体的核心组成部分与工作原理,并分析它在人工智能生态中的重要意义。原创 2025-10-27 07:55:39 · 967 阅读 · 0 评论 -
深入理解 LangChain 工具调用:StructuredTool.from_function() 实践指南
LangChain 引入了 `StructuredTool`,使工具的输入输出更加结构化、类型安全且可验证。其中,`StructuredTool.from_function()` 方法能将普通的 Python 函数快速转化为大模型可调用的结构化工具,大大简化了开发流程。本文将全面剖析 `StructuredTool.from_function()` 的设计原理、使用方法与实践案例,帮助开发者熟练掌握这一关键特性。原创 2025-10-26 10:14:24 · 840 阅读 · 0 评论 -
LangChain 工具调用与 `@tool` 装饰器详解
在 LangChain 的生态中,**工具(Tool)** 是连接大语言模型(LLM)与外部功能的关键组件。通过工具,模型不仅可以“思考”,还可以“行动”——例如调用计算器、搜索引擎、数据库接口、API服务等。为了简化工具的定义与注册,LangChain 提供了一个非常优雅的语法糖:`@tool` 装饰器。开发者只需要在普通 Python 函数前加上 `@tool`,LangChain 就能自动将其识别为一个可被 Agent 使用的工具。原创 2025-10-23 09:19:49 · 1325 阅读 · 0 评论 -
LangChain 记忆机制解析:从对话窗口到摘要与实体记忆
LangChain 作为目前最流行的大模型应用框架之一,针对不同场景设计了多种记忆机制(Memory),让开发者能灵活选择“如何保留历史信息”。 本文将系统介绍 LangChain 中三种核心思路及其代表实现类:- **最近消息窗口记忆**- **摘要记忆**- **实体记忆**我们还会对比它们的优缺点、适用场景,并给出部分代码示例,帮助你快速理解和上手。原创 2025-10-23 09:05:40 · 759 阅读 · 0 评论 -
SimpleSequentialChain与SequentialChain深度解析
LangChain提供了两种主要的顺序链:`SimpleSequentialChain` 和 `SequentialChain`。它们名字相似,功能却有天壤之别。很多初学者在选择时感到困惑:我应该用哪一个?它们的区别到底在哪里?本文将作为一篇详细的指南,带你深入探讨这两种顺序链的作用、用法、适用场景和关键注意事项。读完本文,你将能够清晰地辨别它们,并在你的下一个AI应用中做出最合适的选择。原创 2025-10-21 11:58:38 · 814 阅读 · 0 评论 -
LangChain Expression Language(LCEL)详解
LangChain 推出了一个全新的“表达式级”语法体系—— **LangChain Expression Language(LCEL)**。LCEL 的出现,使得模型调用、提示模板、解析器、检索器之间的编排从“命令式”转向“声明式”。开发者只需通过一行表达式,就能定义整个数据流逻辑,让大模型编排变得更加简洁、高效与可读。原创 2025-10-21 11:48:59 · 819 阅读 · 0 评论 -
深入理解LangChain中的输出解析器
在构建基于大型语言模型(LLM)的应用程序时,如何处理模型的输出往往是一个至关重要的问题。LangChain作为一个流行的框架,提供了丰富的输出解析器,能够将LLM的原始文本输出转化为多种结构化和标准化格式。本文将详细介绍LangChain中各类输出解析器的功能、使用场景以及如何选择合适的解析器,以帮助开发者高效地处理LLM输出。原创 2025-10-19 13:49:45 · 1387 阅读 · 0 评论 -
LangChain PromptTemplate 全解析:从模板化提示到智能链构
在复杂的项目中,提示词往往需要根据不同上下文、不同变量动态生成,这让“硬编码”成为难以维护的痛点。为了解决这一问题,LangChain 提供了一个强大的组件——**PromptTemplate**。它允许开发者通过模板化方式构建提示词,让大模型的调用过程更灵活、更可复用、更结构化。本文将深入解析 PromptTemplate 的设计理念、使用方法及其在实际项目中的应用技巧。原创 2025-10-17 15:42:10 · 1104 阅读 · 0 评论 -
LangChain中invoke与stream的区别详解
在使用LangChain进行大模型应用开发的过程中,开发者最常遇到的两个接口方法是 `invoke` 与 `stream`。它们在表面上都用于调用模型或链(Chain),但在实际运行机制与适用场景上却存在显著差异。理解这两者的区别,不仅能帮助我们在项目中选择更合适的调用方式,还能优化系统性能与用户体验。本文将深入解析LangChain中`invoke`与`stream`的核心原理、使用方法与典型应用场景,并通过对比表与示例代码,帮助读者全面掌握这两种调用方式的最佳实践。原创 2025-10-17 15:26:34 · 980 阅读 · 0 评论 -
LangChain中的Message体系详解
无论是实现一个能连续对话的聊天机器人,还是构建复杂的工具调用代理,消息的结构化传递都是关键环节。而在 LangChain 中,这一切的基础正是 `Message` —— 一个用于表达对话上下文、语义角色和信息来源的核心抽象。本文将全面介绍 LangChain 中的消息体系结构(`Message`),包括其继承关系、主要类型、典型应用场景和实践建议。通过阅读本文,你将理解每类消息在对话系统中的作用,并能在构建多轮交互逻辑时更灵活地使用这些消息组件。原创 2025-10-15 15:13:27 · 1041 阅读 · 0 评论 -
以 OpenAI 为例全面解析大模型的调用过程
随着人工智能技术的快速发展,大语言模型(LLM, Large Language Model)正逐步成为各类智能应用的核心。无论是智能客服、代码助手,还是知识问答系统,都离不开大模型的驱动。而对于开发者而言,**掌握如何用程序高效、稳定地调用大模型 API**,是构建智能应用的第一步。本文将以 **OpenAI 官方 API** 为例,系统介绍程序调用大模型的完整流程。从环境准备到参数设置,从请求发送到响应解析,逐步拆解每一个关键环节,帮助你全面理解大模型调用的机制与最佳实践。原创 2025-10-15 15:01:54 · 1514 阅读 · 0 评论 -
调用大模型 API 的多种方式与最佳实践
在大模型(如 OpenAI GPT、Claude、GLM、文心一言、通义千问等)广泛应用的时代,开发者在调用 API 时,往往需要安全、灵活地管理访问密钥(API Key)、接口地址(Endpoint)和模型参数。 不同的配置方式适用于不同的开发阶段和部署场景,从本地调试到企业级生产环境都有相应的最佳实践。本文将系统介绍调用大模型 API 的多种方式,包括硬编码、配置文件、环境变量、命令行参数、Secrets 管理服务等,并对比它们的优缺点与适用场景。原创 2025-10-13 07:22:57 · 1339 阅读 · 0 评论 -
大模型分类与应用全景解析:从文本到多模态的智能演进
在人工智能的快速发展浪潮中,**大模型(Foundation Models)**已经成为推动产业升级和创新的核心引擎。从早期的语言模型(Language Models)到如今具备多模态感知与推理能力的通用智能体(General AI Agent),大模型正在重新定义人机交互的边界。本文将系统介绍大模型的主要分类,包括**文本模型(非对话与对话)**、**嵌入模型**、**视觉模型(图像与视频)\**以及\**多模态模型**,并分析各类模型的特点、典型用途及发展趋势,帮助读者全面理解大模型技术的生态格局。原创 2025-10-13 07:19:23 · 1231 阅读 · 0 评论 -
智能体核心架构解析:记忆、规划与行动的协同之道
在人工智能快速演进的今天,**智能体(Agent)** 已成为连接大语言模型(LLM)与现实应用的重要桥梁。从自动化代码生成到复杂任务规划,从信息检索到自主决策,智能体的能力正不断突破。支撑这一切的,是其背后的核心机制:**记忆(Memory)**、**规划决策(Planning)** 与 **行动(Action)**。本文将以架构图为基础,深入解析智能体的内部逻辑体系,探讨其核心组件如何协同运作,进而实现类人智能的思考与行动。原创 2025-10-11 07:34:24 · 981 阅读 · 0 评论 -
LangChain + ChatGLM:深入理解RAG原理的智能知识问答系统
**RAG(Retrieval-Augmented Generation,检索增强生成)** 正是解决这一挑战的重要技术。它结合了 **信息检索(Retrieval)** 与 **生成模型(Generation)** 的优势,通过在生成之前检索相关文档,显著提升回答的准确性与可解释性。本文将以 **LangChain + ChatGLM** 为例,详细解析 RAG 的实现原理与技术细节,带你全面理解一个高效的知识问答系统是如何运作的。原创 2025-10-11 07:28:42 · 1388 阅读 · 0 评论 -
LangChain 架构深度解析
LLM 展现出了惊人的能力。然而,要将这些模型的强大潜能真正转化为稳定、可扩展的产品化应用,开发者面临着一系列挑战:模型集成、数据流管理、上下文保持、状态持久化、调试与监控等。LangChain 的出现,正是为了解决这些问题。它不仅仅是一个工具库,而是一个**完整的 LLM 应用程序开发框架**,覆盖从开发、生产到部署的全生命周期。本文将对 LangChain 的核心概念、架构组成以及应用场景进行系统梳理,帮助开发者更高效地构建下一代智能应用。原创 2025-10-10 08:05:22 · 938 阅读 · 0 评论 -
LangChain全面解析
企业需要接入内部知识库、调用外部工具、保存会话上下文,甚至让模型自主完成任务。这些需求催生了专门面向 LLM 应用的开发框架,其中最具影响力的便是 **LangChain**。本文将系统介绍 LangChain 的概念、相关生态、核心能力及其应用场景,并与其他框架进行对比,帮助开发者快速理解如何选择和使用这类工具。原创 2025-10-08 08:55:23 · 756 阅读 · 0 评论 -
Python 虚拟环境管理全指南
Python 社区提供了 **虚拟环境(Virtual Environment)** 的机制。通过虚拟环境,我们可以为每个项目创建独立的 Python 运行环境,实现环境隔离和可重复部署。本文将从 **概念、常用工具(venv、virtualenv、pipenv、poetry、conda)、命令实践、最佳实践** 等多个方面,系统地介绍 Python 虚拟环境的使用与管理,帮助你更高效地应对实际开发中的环境问题。原创 2025-10-08 08:46:32 · 1184 阅读 · 0 评论
分享