深度学习
coolerzZ
面向搜索引擎算法研究。
展开
-
nlp中文常用词整理
大概300多万,词典结构为:词语\t词性\t词频。链接: 点我密码: 11km原创 2021-10-25 10:05:31 · 1554 阅读 · 0 评论 -
docker 启动tensorflow容器使用宿主机显卡驱动问题
容器启动:docker run -it --name xxx --gpus all tensorflow/tensorflow:1.10.0-gpu-py3 /bin/bash—gpus all 可能容器会启动失败,报错:docker: Error response from daemon: could not select device driver “” with ...在确认宿主机nvidia-smi输出没问题后,主要问题可能是由于未安装: nvidia-container-too原创 2021-05-26 14:46:44 · 661 阅读 · 0 评论 -
图像cv-车辆识别-负样本
链接在此提取码:70sg共9k张,黑白图像,多为道路原创 2021-02-25 14:47:14 · 457 阅读 · 0 评论 -
LSTM如何解决梯度弥散和爆炸问题
之前看了很多讲LSTM优点的,但是几乎没有一篇能让我解开心中的疑惑:LSTM究竟怎么解决梯度弥散的?直到看到这篇文章“苏剑林. (2020, Nov 13). 《也来谈谈RNN的梯度消失/爆炸问题 》[Blog post]. Retrieved fromhttps://kexue.fm/archives/7888”,个人认为这是我看到的第一篇讲清楚LSTM解决梯度弥散机制的文章,特此记录,同时感谢大佬@苏剑林!原文地址:https://kexue.fm/archives/7888...转载 2020-12-03 11:04:16 · 4815 阅读 · 1 评论 -
深度学习基础——训练集,验证集和测试集(转载)
转自孙高飞,「发表于 TesterHome 」原始链接点我前言我们在模型训练的时候通常会将我们所得到的数据分成三部分。 分别是training set, dev set(也叫validation set)和 test set。 在我们的模型调研过程中,他们分别起着不同的作用。training set用来训练模型, dev set用来统计单一评估指标,调节参数, 选择算法。 test set 则用来在最后整体评估模型的性能。三者之间的关系与作用如上图,假设我们有一份数据,会将它按一定的规则转载 2020-06-23 08:32:21 · 1964 阅读 · 0 评论 -
深度学习中优化函数详解
看到一篇非常不错讲优化函数的博客,怕以后找不到,所以做个记录原文地址:地址作者:Maddock(给大神点个赞!) (一)一个框架看懂优化算法“说到优化算法,入门级必从 SGD 学起,老司机则会告诉你更好的还有AdaGrad / AdaDelta,或者直接无脑用 Adam。可是看看学术界的最新 pape...转载 2020-04-23 15:27:50 · 1118 阅读 · 0 评论