nlp
coolerzZ
面向搜索引擎算法研究。
展开
-
nlp中文常用词整理
大概300多万,词典结构为:词语\t词性\t词频。链接: 点我密码: 11km原创 2021-10-25 10:05:31 · 1549 阅读 · 0 评论 -
docker 启动tensorflow容器使用宿主机显卡驱动问题
容器启动:docker run -it --name xxx --gpus all tensorflow/tensorflow:1.10.0-gpu-py3 /bin/bash—gpus all 可能容器会启动失败,报错:docker: Error response from daemon: could not select device driver “” with ...在确认宿主机nvidia-smi输出没问题后,主要问题可能是由于未安装: nvidia-container-too原创 2021-05-26 14:46:44 · 659 阅读 · 0 评论 -
LSTM如何解决梯度弥散和爆炸问题
之前看了很多讲LSTM优点的,但是几乎没有一篇能让我解开心中的疑惑:LSTM究竟怎么解决梯度弥散的?直到看到这篇文章“苏剑林. (2020, Nov 13). 《也来谈谈RNN的梯度消失/爆炸问题 》[Blog post]. Retrieved fromhttps://kexue.fm/archives/7888”,个人认为这是我看到的第一篇讲清楚LSTM解决梯度弥散机制的文章,特此记录,同时感谢大佬@苏剑林!原文地址:https://kexue.fm/archives/7888...转载 2020-12-03 11:04:16 · 4785 阅读 · 1 评论 -
关于LSTM解决梯度弥散爆炸问题解析
转自知乎@Towser 原链接“LSTM 能解决梯度消失/梯度爆炸”是对 LSTM 的经典误解。这里我先给出几个粗线条的结论,详细的回答以后有时间了再扩展:1、首先需要明确的是,RNN 中的梯度消失/梯度爆炸和普通的 MLP 或者深层 CNN 中梯度消失/梯度爆炸的含义不一样。MLP/CNN 中不同的层有不同的参数,各是各的梯度;而 RNN 中同样的权重在各个时间步共享,最终的梯度 g = 各个时间步的梯度 g_t 的和。2、由 1 中所述的原因,RNN 中总的梯度是不会消失的。即便梯度.转载 2020-06-29 11:12:33 · 982 阅读 · 0 评论 -
pycharm调用tensorboard笔记
anaconda打开命令窗口输入命令tensorboard --logdir C:\\xx\\autograph地址为存放日志路径原创 2020-04-08 14:45:25 · 576 阅读 · 0 评论 -
命名实体识别conll 数据集
为啥这种数据集还藏着掖着,花了1块5,现在把资源分享出来数据集详情看了一下好像12的数据有问题不能用,其他的应该没问题链接:芝麻开门密码:i0nq...原创 2018-10-24 10:30:19 · 13062 阅读 · 23 评论