134.加油站
题⽬链接:https://leetcode-cn.com/problems/gas-station/
在⼀条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有⼀辆油箱容量⽆限的的汽⻋,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的⼀个加油站出发,开始时油箱为空。
如果你可以绕环路⾏驶⼀周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1:
输⼊:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好⾜够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
方法一:
直接从全局进⾏贪⼼选择,情况如下:
情况⼀:如果gas的总和⼩于cost总和,那么⽆论从哪⾥出发,⼀定是跑不了⼀圈的。
情况⼆:rest[i] = gas[i]-cost[i]为⼀天剩下的油,i从0开始计算累加到最后⼀站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。
情况三:如果累加的最⼩值是负数,汽⻋就要从⾮0节点出发,从后向前,看哪个节点能这个负数填平,能把这个负数填平的节点就是出发节点。
java代码整体如下:
方法二:
可以换⼀个思路,⾸先如果总油量减去总消耗⼤于等于零那么⼀定可以跑完⼀圈,说明各个站点的加油站剩油量rest[i]相加⼀定是⼤于等于零的。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。
i从0开始累加rest[i],和记为curSum,⼀旦curSum⼩于零,说明[0, i]区间都不能作为起始位置,起始位置从i+1算起,再从0计算curSum。
如图所示:
那么为什么⼀旦[i,j] 区间和为负数,起始位置就可以是j+1呢,j+1后⾯就不会出现更⼤的负数?
如果出现更⼤的负数,就是更新j,那么起始位置⼜变成新的j+1了。
⽽且j之前出现了多少负数,j后⾯就会出现多少正数,因为耗油总和是⼤于零的(前提我们已经确定了⼀定可以跑完全程)。
那么局部最优:当前累加rest[j]的和curSum⼀旦⼩于0,起始位置⾄少要是j+1,因为从j开始⼀定不⾏。全局最优:找到可以跑⼀圈的起始位置。
java代码整体如下:
什么是贪心算法?
贪心的本质是选择每一个阶段的局部最优,从而达到全局最优。
举个例子:
假如钱包里有一堆钞票,你可以拿走5张,如果想要尽可能的拿到最大的金额,你要如何拿?
每次拿最大的,最终结果就是拿走最大的金额数。
每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。