在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
解题思路: 此题考查贪婪算法,由于油箱的容量无限,因此每次到达一个站点之后会把加油站的油全部加上,然后判断是否能达到下一个站点。该算法的时间复杂度为 O ( N 2 ) O(N^2) O(N2).
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int n = gas.size();
for (int i = 0; i < n; ++i) {
int rest = 0, j;
for (j = i; j <= i + n; ++j) {
rest += gas[j % n];
if (rest < cost[j % n]) break;
else rest -= cost[j % n];
}
if (j > i + n) return i;
}
return -1;
}
};
参考了网友Grandyang的解法,发现其实只需遍历一次就能找到符合条件的起点。大致的思路是,维护两个变量,total用于统计所有gas的油量之和是否大于cost油箱,这个用于判断能否跑一圈,sum用于统计当选定一个点作为起点之后,每次的总剩余油量是否足够前往下一个站点的消耗。该算法复杂度可以达到 O ( N ) . O(N). O(N).
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int n = gas.size(), total = 0, sum = 0, start = 0;
for (int i = 0; i < n; ++i) {
total += (gas[i] - cost[i]);
sum += (gas[i] - cost[i]);
if (sum < 0) {
sum = 0;
start = i + 1;
}
}
return total < 0 ? -1 : start;
}
};