动态规划(三)最长递增子序列LIS、最大连续子序列和、最大连续子序列乘积

最长递增子序列LIS

问题

给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱)。例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8},长度为4.

最长递增子序列

O(NlgN)算法

假设存在一个序列d[1..9] ={ 2,1 ,5 ,3 ,6,4, 8 ,9, 7},可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

注意,这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~于是算法的时间复杂度就降低到了O(NlogN)~!
代码如下(代码中的数组B从位置0开始存数据)

#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>  

#define N 9 //数组元素个数  
int array[N] = {2, 1, 6, 3, 5, 4, 8, 7, 9}; //原数组  
int B[N]; //在动态规划中使用的数组,用于记录中间结果,其含义三言两语说不清,请参见博文的解释  
int len; //用于标示B数组中的元素个数  

int LIS(int *array, int n); //计算最长递增子序列的长度,计算B数组的元素,array[]循环完一遍后,B的长度len即为所求  
int BiSearch(int *b, int len, int w); //做了修改的二分搜索算法  

int main()  
{  
    printf("LIS: %d\n", LIS(array, N));  

    int i;  
    for(i=0; i<len; ++i)  
    {  
        printf("B[%d]=%d\n", i, B[i]);  
    }  

    return 0;  
}  

int LIS(int *array, int n)  
{  
    len = 1;  
    B[0] = array[0];  
    int i, pos = 0;  

    for(i=1; i<n; ++i)  
    {  
        if(array[i] > B[len-1]) //如果大于B中最大的元素,则直接插入到B数组末尾  
        {  
            B[len] = array[i];  
            ++len;  
        }  
        else  
        {  
            pos = BiSearch(B, len, array[i]); //二分查找需要插入的位置  
            B[pos] = array[i];  
        }  
    }  

    return len;  
}  

//修改的二分查找算法,返回数组元素需要插入的位置。  
int BiSearch(int *b, int len, int w)  
{  
    int left = 0, right = len - 1;  
    int mid;  
    while (left <= right)  
    {  
        mid = left + (right-left)/2;  
        if (b[mid] > w)  
            right = mid - 1;  
        else if (b[mid] < w)  
            left = mid + 1;  
        else    //找到了该元素,则直接返回  
            return mid;  
    }  
    return left;//数组b中不存在该元素,则返回该元素应该插入的位置  
}

叠罗汉
叠罗汉一 - CSDN博客
https://blog.csdn.net/coolwriter/article/details/79253722

2.最大连续子序列和

问题
对于形如:int arr[] = { 1, -5, 3, 8, -9, 6 };的数组,求出它的最大连续子序列和。
若数组中全部元素都是正数,则最大连续子序列和即是整个数组。
若数组中全部元素都是负数,则最大连续子序列和即是空序列,最大和就是0。

class Solution {
public:
      int FindGreatestSumOfSubArray(vector<int> array) {
        if(array.size()==0)
            return 0;
        int dp[array.size()];
         dp[0]=array[0];
         int result=array[0];
         for(int i=1;i<array.size();i++)
         {
             dp[i]=max(array[i],dp[i-1]+array[i]);
             result=max(result,dp[i]);
         }
        return result;
    }
};

3.最大连续子序列乘积

考虑到乘积子序列中有正有负也还可能有0,我们可以把问题简化成这样:数组中找一个子序列,使得它的乘积最大;同时找一个子序列,使得它的乘积最小(负数的情况)。因为虽然我们只要一个最大积,但由于负数的存在,我们同时找这两个乘积做起来反而方便。也就是说,不但记录最大乘积,也要记录最小乘积。

假设数组为a[],直接利用动态规划来求解,考虑到可能存在负数的情况,我们用maxend来表示以a[i]结尾的最大连续子串的乘积值,用minend表示以a[i]结尾的最小的子串的乘积值,那么状态转移方程为:

 maxend = max(max(maxend * a[i], minend * a[i]), a[i]);
 minend = min(min(maxend * a[i], minend * a[i]), a[i]);  

先考虑不连续的

思路:一维动态规划

  考虑到乘积子序列中有正有负也还可能有0,可以把问题简化成这样:

数组中找一个子序列,使得它的乘积最大;同时找一个子序列,使得它的乘积最小(负数的情况)。
虽然只要一个最大积,但由于负数的存在,也要记录最小乘积。碰到一个新的负数元素时,最小乘积相乘之后得到最大值。

代码:

int maxSuccessiveProduct(int num[], int n)
{
    if(n < 1)
        return INT_MIN;

    int max_prod = num[0], min_prod = num[0];
    int max_res  = max_prod;

    for(int i = 1; i < n; ++i)
    {
        int cur_prod1 = max_prod * num[i];
        int cur_prod2 = min_prod * num[i];

        max_prod = max(max_prod, max(cur_prod1, cur_prod2));
        min_prod = min(min_prod, min(cur_prod1, cur_prod2));

        max_res  = max(max_prod, min_prod);
    }

    return max_res;
}

再考虑连续的

思路:

和不连续的差不多,不过要同时记录当前子串的最大/最小乘积,如果最大的乘积<当前值,则开始新的子串。

代码:

int maxProduct(int A[], int n) {
    int maxEnd = A[0];
    int minEnd = A[0];
    int maxResult = A[0];

    for (int i = 1; i < n; ++i)
    {
        int end1 = maxEnd * A[i], end2 = minEnd * A[i];
        maxEnd   = max(max(end1, end2), A[i]);  //和上面的不同在于,外层max的另一个参数是当前元素值
        minEnd   = min(min(end1, end2), A[i]);
        maxResult = max(maxResult, maxEnd);
    }
    return maxResult;
}
  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值