2.8mnist手写数字识别之模型保存与恢复精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)

这篇博客详细讲解了如何在飞桨框架中保存和恢复深度学习模型,特别是在训练过程中如何中断后再从断点继续训练。通过MNIST手写数字识别案例,使用Adam优化器和动态学习率策略,展示了训练过程中的模型保存,并验证了恢复训练后的模型性能与中断前一致。
摘要由CSDN通过智能技术生成

2.8mnist手写数字识别之模型保存与恢复精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)

 

目录

2.8mnist手写数字识别之模型保存与恢复精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)

模型加载及恢复训练

恢复训练


 

模型加载及恢复训练

在之前的章节已经向读者介绍了将训练好的模型保存到磁盘文件的方法。应用程序可以随时加载模型,完成预测任务。但是在日常训练工作中,我们会遇到一些突发情况,导致训练过程主动或被动的中断。如果训练一个模型需要花费几天的时间,中断后从初始状态重新训练是不可接受的。

万幸的是,飞桨支持从上一次保存状态开始继续训练,只要我们随时保存训练过程中的模型状态,就不用从初始状态重新训练。

下面介绍恢复训练的实现方法,依然使用手写数字识别的案例,网络定义的部分保持不变。

 

import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
from PIL import Image

import gzip
import json

# 定义数据集读取器
def load_data(mode='train'):

    # 数据文件
    datafile = './work/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    train_set, val_set, eval_set = data

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28

    if mode == 'train':
        imgs = train_set[0]
        labels = train_set[1]
    elif mode == 'valid':
        imgs = val_set[0]
        labels = val_set[1]
    elif mode == 'eval':
        imgs = eval_set[0]
        labels = eval_set[1]

    imgs_length = len(imgs)

    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(
                  len(imgs), len(labels))
                  
    index_list = list(range(imgs_length))

    # 读入数据时用到的batchsize
    BATCHSIZE = 100

    # 定义数据生成器
    def data_generator():
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        for i in index_list:
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('int64')
            imgs_list.append(img) 
            labels_list.append(label)
            if len(imgs_list) == BATCHSIZE:
     
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值