关于强连通图和欧拉图的一些粗浅理解

由于上一道题涉及了环,所以我当时就在纠结一个问题,强连通图是否一定可以是环形的?(就是说强连通图是否一定是欧拉图?= 是否一定有欧拉回路?= 是否一定有一笔画的环形路线?)

现在,我给出答案,不一定。下面所说的欧拉路径(4月4日注:半欧拉图,只有欧拉通路没有欧拉回路)不包含欧拉回路。
下面几点都是关于有向图

  1. 强连通图不一定是欧拉图。反例如下:(但是这个强连通图有欧拉路径)
    在这里插入图片描述

  2. 连通的欧拉图一定是强连通图。(想想孤立点?2333)(4月4日注:这个连通指的可以是单连通,也可以是弱连通)
    所以欧拉图不一定是强连通图。

  3. 一个有向图是欧拉图当且仅当这个有向图满足性质A每个点的出度等于入度。(欧拉回路的定义是访问图中所有边各一次的环路,所以一个图中若有孤立点也无妨,照样有可能是欧拉图,因为欧拉回路没说非要访问每个点)
    4月4日注:(性质A:这个有向图的基图要么是连通图,要么有N个连通分量且其中N-1个连通分量都是孤立点。)设想如下反例就明白了:
    在这里插入图片描述

  4. 强连通图不一定有欧拉路径。两个反例如下:
    在这里插入图片描述在这里插入图片描述

  5. 有欧拉路径的有向图不一定是强连通图。反例如下:
    在这里插入图片描述

  6. 一个有向图有欧拉路径当且仅当该有向图满足性质A有两个点入度和出度不等(而且一个点出度比入度多1(作为欧拉路径的起点),另一个点出度比入度少1(作为欧拉路径的终点)),其他点的入度等于出度。

  7. 在欧拉路径上添一条终点到起点的边,就成了欧拉回路(欧拉图)。

对于无向图,(第3点和第6点)的第二个条件改成全是偶点和恰两个奇点(其他都是偶点)。

另,对于一个有向单连通图(4月4日注:有向弱连通图也行)而言,再加上每个点出入度相等的条件,就成了强连通图,当然也成了欧拉图。想一想加上这个条件为什么能变成强连通图?(随便设想两个点,本来两点之间只能保证单向连通(或基图连通),加上这个条件后如何证明双向连通?)

4月4日注:对于有向单连通图,如下图所示,已知两点间有一条蓝色的路径,证明加上每个点出入度相等的条件后一定有一条绿色的路径。
在这里插入图片描述
对于有向弱连通图,如下图所示,已知两点间在基图上连通,两点间的边只有两种方向,证明加上每个点出入度相等的条件后一定对于两个方向都各有一条与之方向相反的绿色路径。
在这里插入图片描述

### 回答1: 可简单化:如果一个中没有重复的边和自环,那么它就是可简单化的。 连通:如果一个中任意两个顶点都可以通过路径相连,那么它就是连通欧拉图:如果一个中存在一条经过所有边恰好一次的回路,那么它就是欧拉图。 哈密顿:如果一个中存在一条经过所有顶点恰好一次的路径,那么它就是哈密顿。 ### 回答2: 1. 可简单化的判断: 如果一个中没有重边和自环,则称之为简单。 (1)若给你的中有自环,则不可能是简单; (2)若给你的中有重边,则也不可能是简单; (3)最后,如果中既没有自环也没有重边,则这个便是简单。 例如,下面是一张简单。 2. 连通的判断: 在一个中,如果任意两点都有路径相连,则称这个连通。 判断方法: (1)从中任意一点开始,对这个点进行搜索,如果能够到达所有的点,则该连通; (2)如果搜索发现有点是无法到达的,则说明该是非连通; 例如,下是一张连通。 3. 欧拉图的判断: 如果一个无向或有向中存在一条经过所有边恰好一次的闭合路径,则称这个欧拉图。 判断方法: (1)无向连通中: 有欧拉回路的必要条件是所有顶点度数均为偶数,有欧拉通路的必要条件是恰有两个顶点度数为奇数。 (2)有向连通中: 有欧拉回路的必要条件是该中每个顶点的入度和出度相等(即对每个节点而言,入度=出度),有欧拉通路的必要条件是有且只有两个顶点的出度与入度之差为1,另外所有顶点的入度和出度相等。 例如,下是一张欧拉图。 4. 哈密顿的判断: 如果一个无向或有向中存在一个包含所有顶点的简单路径,则称这个为哈密顿。 判断方法: (1)无向中: 对于一个无向,如果它的任意若干个顶点之间的度数之和都不小于这些顶点的个数,则它是一个哈密顿。 (2)有向中: 对于一个有向,如果它的任意若干个顶点之间的出度之和与入度之和的较小值都不小于这些顶点的个数,则它是一个哈密顿。 例如,下是一张哈密顿。 ### 回答3: 可简单化、连通欧拉图和哈密顿都是论中常用的概念。根据定义和特性,我们可以判断一个给定的是否为这几种。 1. 可简单化: 可简单化指的是一个无向或有向是否能通过删减和重新连接边来变成一个简单(即所有边均为无向无权边)。所以,只需要判断给定中是否存在自环边和重边即可。如果没有,那么这个就可简单化。 2. 连通连通指的是在一个无向或有向中,任意两个节点之间都存在至少一条路径。因此,只需要进行深度或广度优先搜索,如果能够访问每个节点,则该就是连通;否则,就不是连通。 3. 欧拉图欧拉图的定义是:一个无向或有向中,如果存在一条单回路(每个节点恰好通过一次),其包含所有的节点和边,那么该就是欧拉图。给定是否为欧拉图,可以使用以下两个定理: - 定理一(欧拉回路):一个无向欧拉图,当且仅当每个节点的度数都是偶数。 - 定理二(欧拉通路):一个无向有欧拉通路,当且仅当恰有两个节点的度数为奇数。 因此,只需要遍历每个节点并统计它们的度数,看度数是否都为偶数或恰有两个度数为奇数即可。 4. 哈密顿: 哈密顿指的是在一个无向或有向中,存在一个哈密顿回路,即恰好经过每个节点一次。给定一个是否为哈密顿,需要使用以下充要条件: - 充分条件:如果一个无向或有向的节点数大于等于3,并且对于任意两个节点,它们之间相邻的节点数之和大于等于节点总数,那么该就是哈密顿。 - 必要条件:如果一个无向或有向是哈密顿,那么对于任意一个非空节点子集,它们都有至少一个节点与该子集外的节点相连。 因此,可以先使用较低效的暴力搜索方法来判断给定的是否是哈密顿,如果节点数不超过20个,则可以针对每个节点进行深度优先搜索,判断是否存在哈密顿回路。如果节点数较大,则可以利用充分条件直接判定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值